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Abstract

Dither signals are commonly used for compensating nonlinearities in feedback systems
in electronics and mechanics. The seminal works by Zames and Shneydor and more
recently by Mossaheb present rigorous tools for systematic design of dithered systems.
Their results rely however on a Lipschitz assumption on the nonlinearity and thus do
not cover important applications with discontinuities.

The aim of this thesis is to provide some ideas and tools on how to analyse and
design dither in nonsmooth systems. In particular, it is shown that a dithered relay
feedback system can be approximated by a smoothed system. Guidelines are given
for tuning the amplitude and the period time of the dither signal, in order to stabilize
the nonsmooth system. Stability results based on Popov-like and Zames-Falb criteria
jointly with some Linear Matrix Inequalities are proposed.

Moreover it is argued that in dithered relay feedback systems the shape of dither
signals is relevant for stabilization. Some peculiar behaviours of relay feedback sys-
tems dithered with a particular class of dither signals are presented. When the dither
signal is a square wave, the dithered system can exhibit an asymmetric periodic orbit,
though the smoothed system is asymptotically stable. We even show an example in
which, by using a trapezoidal dither signal, both systems have a stable oscillation, but
the period time for the oscillation of the smoothed system is different from the one of
the dithered system.

Finally some engineering applications are presented in order to show the usefulness
of techniques and results discussed in the thesis.

Thesis Supervisor: Franco Garofalo, Professor of Automatic Control

Thesis Supervisor: Francesco Vasca, Associate Professor of Automatic Control
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Chapter 1

Introduction

I heard for the first time the word “dither” during my Master thesis period. I was
studying analog-to-digital converters and techniques for compensating nonlinearities
due to the quantization effects. Dither was one of those techniques.

Later, during my PhD studies, it was a pleasant surprise to discover that dither
was a word often used also in Automatic Control papers. So I decided to investigate
how much of this technique was in common between the fields of Electronics and
Automatics. I think it is a task worth to follow: studying a problem by different points
of view and trying to bridge the gap (it often exists) among different approaches. In this
process I got a broad view of the dither technique by looking at its several applications
and I found some interesting problems to study. This thesis presents such topics.

As said above, dither has a wide class of applications. Here there are some of them:

• linearization of electrovalve characteristics;

• attenuation of friction effects (e.g. stick-slip);

• quenching of spurious tones in sigma-delta converters;

• suppression of limit cycles or chaos in nonlinear feedback systems.

The injection of a dither signal into nonlinear feedback system is widely used in
practice for the purpose of modifying nonlinearities in order to make the stability more
robust, to extinguish undesirable limit cycles, to reduce nonlinear distortion, to quench
jump phenomena, etc. Much research has been published to treat this problem in recent
years. Zames and Shneydor (1976) showed that the effect of dither on the behaviour
of nonlinear systems depends on its amplitude distribution. Stability of the dithered
system is related to that of its corresponding averaged system (defined by using an
averaging operation on the original dithered nonlinearity). Zames and Shneydor (1977)
showed that the averaged nonlinearity always lies in a nonlinear sector narrower than
the original nonlinearity: the stabilizing effect of dither is thus explained in terms of
reducing the size of the critical region and quenching jump phenomena.

Mossaheb (1983) displayed that the dither with a sufficiently high frequency may
result in the smoothed system’s output and the dithered system’s output as close as
desired. This phenomenon allows us for a rigorous prediction of the dithered system’s
stability by establishing that of its corresponding smoothed system when the dither has
both sufficiently large amplitude and frequency, and the “linearized” feedback system
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has the low-pass filter property. In general, dither is a periodic signal with a chosen
frequency higher than the system cut-off frequency; as a result it is filtered out before
reaching the output.

All these considerations are rigorously proven (Zames and Shneydor 1976, Zames
and Shneydor 1977, Mossaheb 1983) only for Lipschitz nonlinearities. Indeed, dis-
continuous nonlinearities in feedback control systems with high-frequency excitations
appear in a large variety of models, including systems with adaptive control (Åström
and Wittenmark 1989), friction (Armstrong-Helouvry 1991, Armstrong-Helouvry et
al. 1994), power electronics (Lehman and Bass 1996), pulse-width modulated convert-
ers (Peterchev and Sanders 2001), quantizers (Gray and Neuhoff 1998), relays (Tsypkin
1984), and variable-structure controllers (Utkin 1992).

In their paper on the analysis of the (smooth) LuGre friction model, Pervozvanski
and Canudas-de-Wit (Pervozvanski and de Wit 2002) point out that a rigorous analysis
of dither in discontinuous systems does not exist. Dither tuning of general nonsmooth
systems is to our knowledge limited to approximate design methods mainly based on
describing functions (Atherton 1975, Gelb and Vander-Velde 1968).

In power electronic systems, including various types of DC/DC converters, aver-
aging theory is applied to separate the slow dynamics from the fast dynamics, which
for example can be imposed by switching elements in pulse-width modulation, such
as for dithered systems. Power electronics circuits is a class of systems with nons-
mooth dynamics for which rigorous averaging analysis have been done, see (Lehman
and Bass 1996, Gelig and Churilov 1998). Thus it is interesting to study dither applied
to discontinuous nonlinearities.

In this thesis dithered relay feedback systems are investigated. The reason for con-
sidering this class of systems is that they are common. Early motivation for study-
ing relay systems come from mechanical and electromechanical systems (Andronov
et al. 1965, Tsypkin 1984). Recently, there has been renewed interest due to a va-
riety of emerging applications, such as automatic tuning of PID controllers (Åström
and Hägglund 1995), quantized control (Elia and Mitter 2001), and supervisory con-
trol (Morse 1995). The analysis of relay feedback systems is non-trivial, even if the
dynamical part of the system is linear. Major progress in the study of various properties
of autonomous linear systems with relay feedback was achieved in the last decade, par-
ticularly in the understanding of limit cycles in these systems, e.g., (Åström 1995, Jo-
hansson et al. 1999, di Bernardo et al. 2000, Gonçalves et al. 2001, Varigonda and
Georgiou 2001, Johansson et al. 2002). Further historical remarks and references on
relay feedback systems are reported in (Tsypkin 1984, Johansson et al. 1999).

1.1 Thesis outline
This thesis can be divided into three parts. The first part (Chapters 2 and 3) presents
preliminary concepts on relay feedback systems and dither. The second part (Chap-
ters 4 and 5) is the main contribution of the thesis with some theoretical results. The
last part (Chapter 6) deals with engineering applications. The outline is the following.

Chapter 2 presents the basic concepts of relay feedback systems (RFSs). The more
general framework of piecewise linear systems is introduced and RFSs are discussed in
this framework. Some general definitions and properties are given and classical results
on the existence of oscillations in relay feedback systems are discussed.

Chapter 3 gives an overview of the dithering technique: basic principles and some
explicative examples are presented. Then dithering applied to feedback systems is
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introduced with a literature overview of seminal works on dither in nonlinear systems.
The problem of dither analysis in RFSs is highlighted and some motivating examples
are presented. Those examples give a useful insight in open questions about the effects
that different dither waveforms can induce in RFSs.

Chapter 4 (together with chapter 5) consists of the main original contribution of
the thesis. In this chapter some ideas and tools for studying dithered RFSs are given.
Some theorems are derived: an averaging theorem on finite time horizon, en extension
to infinite time horizon, a theorem on practical stability of dithered relay feedback
systems and some results on the analysis of limit cycles in RFSs with dither.

Chapter 5 uses general results of the previous chapter and, by using optimization
techniques like Linear Matrix Inequalities, attacks the problem of finding good estimate
of the approximation error defined as the difference between the state of the dithered
system and the state of the corresponding smoothed system. In this way it is possible
to design a dithered RFS by choosing a dither amplitude and frequency suitable for
obtaining the desired performance of the overall system. Some design algorithms are
given and discussed by examples.

Chapter 6 presents two possible applications of the theory derived in previous chap-
ters. A DC/DC buck converter and a DC motor position control system are presented.
It is shown how these systems can be considered dithered RFSs and some simulations
show the effectiveness of dither theory.

1.2 Contributions
The main contributions of this thesis are given in Chapter 4 and Chapter 5. The main
result is an extension of Mossaheb’s work to relay feedback systems dithered with pe-
riodic triangular waveforms. In order to derive that, it is used an averaging approach.
Since this classical theory is not valid for nonsmooth dynamical systems (Khalil 2002),
some peculiarities of the relay nonlinearity are exploited for proving a finite time hori-
zon theorem on the approximation error. This error is defined as the difference between
states of the dithered system and the corresponding smoothed system (without dither)
in which the relay nonlinearity is replaced by the corresponding averaged nonlinearity
(for triangular dither, it is a saturation nonlinearity). It is shown that the error is a func-
tion of ordo p where p is the dither period. In this way it is always possible to increase
the dither frequency in order to get the error smaller and smaller.

The theorem is extended to the infinite time horizon case (by adding some stability
assumptions on the smoothed system) and this gives some useful considerations for
deriving a bound on the approximation error less conservative than the finite time hori-
zon case. The practically stability property of the dithered system is investigated in a
successive theorem.

A more interesting and new problem is the investigation of how the dither’s shape
can affect performances in nonsmooth feedback systems. Examples with square wave
and trapezoidal dither signals are studied and it is showed that this class of dither sig-
nals determines behaviours very different from the triangular case. In particular it is
not possible to derive a corresponding averaging theorem such as for triangular dither.
There are cases in which the smoothed system is asymptotically stable and the dithered
system presents an asymmetric limit cycle that does not reduce its amplitude even by
increasing the dither frequency. Dither signals with zero slope over nonzero time inter-
vals (such as square wave and trapezoidal dither signals) generally fail to stabilize relay
feedback system. The form of the dither signal is thus very critical in applications with



1.3 Publications 4

discontinuous dynamics. This is in stark contrast to systems with Lipschitz continuous
dynamics for which it can be shown that the form of the dither signal is not critical at
all, see (Zames and Shneydor 1976, Zames and Shneydor 1977).

Finally other original contributes are given about the design of dithered relay feed-
back systems: how to choose dither amplitude and frequency in order to get some
desired performances? By exploiting theoretical results derived in averaging theorems,
it is given a design procedure for dithered systems, where the dither signal is adjusted
to the dynamics of the linear part of the system.

1.3 Publications
The work presented in this thesis has to date resulted in the following publications.

• L. Iannelli, K.H. Johansson, U. Jönsson and F. Vasca, "Analysis of Dither in
Relay Feedback Systems". Accepted for presentation at IEEE Conference on
Decision and Control, December 2002, Las Vegas, Nevada, USA.

• L. Iannelli, K.H. Johansson, U. Jönsson and F. Vasca, "Analysis of Dither in
Relay Feedback Systems". Reglermöte, May 2002, Linköping, Sweden.

Moreover some papers have been submitted:

• L. Iannelli, K.H. Johansson, U. Jönsson and F. Vasca, "Dither for Smoothing
Relay Feedback Systems". submitted to IEEE Transactions on Circuits and Sys-
tems, Part I.

• L. Iannelli, K.H. Johansson, U. Jönsson and F. Vasca, "Practical Stability and
Smooth-Switching Trajectories in Dithered Relay Feedback Systems". submit-
ted to European Control Conference 2003.

In addition, a technical report is available.

• L. Iannelli, K.H. Johansson, U. Jönsson and F. Vasca, "Analysis of Dither in Re-
lay Feedback Systems". Internal report IR-S3-REG-0201, S3-Automatic Con-
trol, Royal Institute of Technology, 2002.



Chapter 2

Relay Feedback Systems

In this chapter we study Relay Feedback Systems (RFSs). We consider relays in feed-
back with a Linear Time Invariant (LTI) system (as shown in Figure 2.1).

Analysis of RFS is an old problem. The first works were motivated by the use
of relays in electromechanical systems and simple models of dry friction (Andronov et
al. 1965, Tsypkin 1984). Most recent examples and applications of RFSs are automatic
tuning of PID regulators (Åström and Wittenmark 1989) and sigma-delta converters
(Norsworthy et al. 1996).

Although they are simple devices, RFSs are quite complex to analyse. In fact RFSs
are particular nonlinear systems: they belong to the so called nonsmooth systems class.
In fact the characteristic of a relay isn’t Lipschitz since the signum function is discon-
tinuous in zero. This property doesn’t allow to use the standard tools of analysis of
nonlinear smooth systems so that analysis of RFSs has to be carried on more carefully.
Moreover nonlinear phenomena typical of nonsmooth systems are present in RFSs
(see (Johansson et al. 1999) and its references). A lot of work has been done on study-
ing RFSs and, in particular, conditions for the existence and stability of oscillations.
Åström (1995) derived some necessary and sufficient conditions for the existence of
limit cycles in RFSs. Then Gonçalves et al. (2001) studied global stability conditions
for the existence of these oscillations. Some other papers addressed the problem of
oscillations and sliding (di Bernardo et al. 2000) or oscillations generated by external
forcing (Varigonda and Georgiou 2001).

We will give here a brief overview of the basic problems in studying relay feedback
systems.

2.1 Definition of RFS
Consider a SISO system represented in the state space as

ẋ
�
t ��� Ax

�
t �� bu

�
t � (2.1a)

u
�
t ��� rel

�
cx
�
t ��� (2.1b)

where the operator rel is defined as

rel
�
z ��� ��� �� 1 z � 0

0 z � 0� 1 z � 0
(2.2)
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Figure 2.1: Relay Feedback System.

Equations (2.1) describe a relay feedback system. We will say that t is a switch-
ing time instant if u is discontinuous in t. Moreover we say that a trajectory of (2.1)
switches at some time t if t is a switching time.

2.2 Piecewise Linear Systems
RFSs belong to the class of piecewise linear systems (PWL) (Johansson 1999, Chapter
2), (Gonçalves 2000, Chapter 3) defined as a set of affine (in the state) linear systems

ẋ
�
t ��� Aqx

�
t �� aq � Bqu

�
t ��� (2.3)

where x ��� n and q ��� 1 � 2 ��
�
�
�� M � . A switching rule defines the current q (called
discrete state variable) among the possible M values. The current q is a function of the
current state x (in the case of a memoryless switching rule) or it depends on present and
past values of x. The signal q

�
t � is piecewise constant and we say that t � is a switching

time if q
�
t � is discontinuous in t � .

If the switching rule is memoryless, then q is function of the current state x and the
state space is divided into M (possibly unbounded), sets Xi called cells:

Xi � � x : q
�
x ��� i �!


Remark 2.2.1 It could be worth to note that Xi are closed sets when the vector field
of (2.3) is continuous on the boundaries of Xi (this is the case discussed in (Johansson
1999)). When we consider dynamic systems with discontinuous vector field, such as the
RFSs, the cells Xi cannot be all closed sets in order to guarantee the well-posedness
of the problem (for a discussion of the well-posedness in relay feedback systems see
(Imura and van der Shaft 2000)).

In the state space a switching occurs at switching surfaces (hyperplanes of dimen-
sion n � 1) defined as

S j � � x : c jx � d j � 0 �"� j � 1 ��
�
�
�� N (2.4)
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Figure 2.2: Existence of solutions in a PWL system.

where c j is a row vector with n elements.

Definition 2.2.1 Let x
�
t � be an absolutely continuous function. We say that x

�
t �;� u � t �

is a trajectory of the system (2.3) on < t0 � t f = if, for almost all t ��< t0 � t f = , the equation
ẋ
�
t ��� Aqx

�
t �� aq � Bqu

�
t � holds for all q with x

�
t �>� Xq.

It is clear that if t � is a switching time, the time derivative of x
�
t � could not be defined if

ẋ
�
t �;� is discontinuous (nonsmooth systems). But if x

�
t � does not remain on a switching

surface for any time, the time interval in which the time derivative is not defined has
measure equal to zero so x

�
t � is still a trajectory (in the definition it is required that

the differential equation holds for almost all t). On the other hand in the definition of
PWL systems we required that q

�
t � is a piecewise constant function: this means that

arbitrarily fast switches (Johansson et al. 1999) are not possible.

Example 2.2.1
The RFS defined in Equations(2.1) can be viewed as a PWL defined by three cells
X1 ��� x : cx � 0 � , X2 ��� x : cx � 0 � and X3 that coincides with the switching surface
S �?� x : cx � 0 � . Moreover A1 � A � bc, A2 � A � bc, A3 � A, a1 @ 2 @ 3 � 0, B1 @ 2 @ 3 � 0.

Let us give a deeper look at conditions for the existence of solution in a PWL
system. If the initial condition x0 is in the interior1 of a cell Xi then there exists a
solution at least from the initial condition to the first intersection of the trajectory with
a switching surface. In fact in Xi the system dynamics is affine in the state. The problem
is when the initial condition is on a switching surface and we can have unique solution,
multiple solution, or no solution, depending on the vector field in the neighborhood of
the switching surface S j.

In Figure 2.2 on the left we have a situation in which the vector field does not
change signum switching from cell Xk to cell Xl through S j. In this case, if x0 � S j the
solution is unique since the trajectory necessarily passes from Xk to Xl .

In the center of Figure 2.2 we could have multiple solutions since the trajectory can
either move upwards or downwards.

In the last case (Figure 2.2, on the right) the vector field points toward the switching
surface on both sides of the switching surface. Since we cannot have arbitrarily fast
switchings (or, in other words, ẋ has to be defined almost for all t), the solution does
not exist. One way to overcome this problem is to define a dynamical system on the
switching surface S j (so that this dynamical system is n � 1 dimensional) and let the
trajectory evolve on the switching surface satisfying the differential equation of this
new dynamical system until x

�
t � “escapes” from one of the sides of S j. This behaviour

1x is an interior point of X if there exists a neighborhood W of x such that W A X (see Appendix A).
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Figure 2.3: Saturation system.

is called sliding mode. In this thesis we will not consider the possibility of sliding mode
(we exclude the case in which vector field points toward the switching surface on both
sides of it).

Example 2.2.2
Let us consider the saturation system (Figure 2.3)

ẋ
�
t ��� Ax

�
t �� bsat

�
cx
�
t ���;� (2.5)

where the operator sat is defined as

sat
�
z �B� ��� �� 1 z � 1 �

z C z CED 1 �� 1 z ��� 1 
 (2.6)

In this case we have three cells:

X1 � � x : cx � 1 �
X2 � � x : C cx CFD 1 �
X3 � � x : cx �G� 1 �!


The corresponding systems are

ẋ
�
t �B� Ax

�
t �� b for x � X1 �

ẋ
�
t �B� � A � bc � x � t � for x � X2

ẋ
�
t �B� Ax

�
t �H� b for x � X3 


The switching surfaces are

S1 �?� x : cx ��� 1 �
S2 �?� x : cx �I� 1 �!
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Figure 2.4: State space partition for a saturation system.

In this case the cells X1 and X3 are open and unbounded sets while X2 is a closed
(and unbounded) set (Figure 2.4). The vector field is continuous on S1 and S2 (with
S1 � S2 U X2) so we have no problems for the existence of solutions. On the other hand
the sat operator is Lipschitz and the existence theorem (Theorem A.4.1) guarantees the
existence and uniqueness of the solution.

2.2.1 Equilibrium points
PWL systems can present none, one or multiple equilibrium points. By looking at
Equation (2.3) we can say that x̄ � Xi is an equilibrium point for the constant input ū if
and only if

Aix̄ � ai � Biū � 0 
 (2.7)

An important task is to investigate the local stability of equilibrium points. If the equi-
librium point is an interior point of a cell, it is straightforward to analyse its local
stability by using the standard tools (eigenvalues computation) of linear systems.

Example 2.2.3
Let us consider the saturation system in the Example 2.2.2 with

A �WV � 0 
 5 0
0 � 1 X b �WV 1� β X c �ZY 0 1 [ 
 (2.8)

In this case cA 	 1b � β . In cells X1 and X3 we have, respectively, x̄1 �\� A 	 1b and
x̄3 � A 	 1b as points that make null the time derivative of x. Moreover cx̄1 �]� β and
cx̄3 � β . So if � β � 1 (i.e. β �G� 1) x1 and x3 are equilibrium points of, respectively,
X1 and X3, otherwise they are not. In the first case we have three equilibrium points (the
origin and

� � 2 ^ β � T ) and in the second case only the origin is an equilibrium point
of the saturation system. In general if A is invertible and 1 � cA 	 1b � 0 (it is possible
to show that this inequality implies A � bc invertible) , then we have three equilibrium
points: the origin and two points symmetric with respect to the origin.
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Some problems arise when an equilibrium point x̄ belongs to a switching surface.
In this case the equilibrium point belongs to a boundary of one or more cells (if there
is a nonempty intersection among some cells): it is a limit point2 of two or more cells.
The local stability is not simple to be shown. Let us consider the following

Example 2.2.4
We have a second order PWL system defined as

ẋ
�
t ��� A1x

�
t �;� x � X1

ẋ
�
t ��� A2x

�
t �;� x � X2

with X1 the first and third quadrant and X2 the second and fourth quadrant and

A1 �_V � 0 
 1 1� 10 � 0 
 1X A2 �_V � 0 
 1 10� 1 � 0 
 1 X 

Both matrices A1 and A2 have the same stable eigenvalues ( � 0 
 1 � j ` 10) and the
origin (belonging to the intersection of two switching surfaces) is an equilibrium point
for both the systems. It can be shown that the origin is globally stable but if we swap
X1 with X2 (X1 second and fourth quadrant and X2 first and third quadrant), the origin
is unstable.

As we saw in the previous example, we have to consider carefully the case in which
some equilibrium points are on a switching surface. For discontinuous PWL systems
this is more relevant with respect to PWL systems that have a continuous vector field
such as the case of saturation systems.

Example 2.2.5
If we consider again the saturation example 2.2.2 we can investigate when an equilib-
rium point is on a switching surfaces. If cA 	 1b � 1 the two equilibrium points different
from the origin lie on the switching surfaces. If we introduce an external constant refer-
ence R � 0 (analogous results can be derived for R � 0) the system looses the symmetry
so that we can have cases in which only one equilibrium point is on a switching surface.
Let us consider the saturation system

ẋ � Ax � bsat
�
cx � R �;
 (2.9)

Now the switching surfaces are S1 �]� x : cx � R � 1 � and S2 �]� x : cx � R �a� 1 � .
Moreover X1 �a� x : cx � R � 1 � , X2 �\� x : C cx � R CbD 1 � and X3 �\� x : cx � R �� 1 � . Assuming that A and A � bc are invertible we can now find the condition for
the existence of none, one or more equilibrium points. Since in cell X2 the dynamics
are ẋ � � A � bc � x � bR, we can compute the inverse of the matrix A � bc by using the
inversion lemma (Ljung 1999)�

F � GHK � 	 1 � F 	 1 � F 	 1G
�
KF 	 1G � H � 	 1KF 	 1 
 (2.10)

By applying the inversion lemma we obtain�
A � bc � 	 1 � A 	 1 � A 	 1b

�
cA 	 1b � 1 � 	 1cA 	 1� A 	 1 � A 	 1bcA 	 1

1 � cA 	 1b
� (2.11)

then if 1 � cA 	 1b c� 0, A � bc is invertible.
2x is a limit point of the set X if every neighborhood of x contains a point y de x such that y f X .
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• The point x̄2 �g� � A � bc � 	 1bR is an equilibrium point of (2.9) only if C cx̄2 � R C;D
1. By simple substitutions and algebraic computations this condition becomesCR � � 1 � cA 	 1b �hCFD 1.

• The point x̄1 �g� A 	 1b is an equilibrium point if � cA 	 1b � R � 1 (or 1 � cA 	 1b �
R).

• The point x̄3 � A 	 1b is an equilibrium point if cA 	 1b � R �i� 1 (or 1 � cA 	 1b �� R).

If we look at the expression 1 � cA 	 1b we have different cases as reported in Table 2.1.
We see that the only two cases when an equilibrium point is on a switching surface are
when 1 � cA 	 1B �?� R. In both the cases we have two coincident equilibrium points
and it is not possible to have a single equilibrium point.

2.3 RFSs as PWL systems
Let us consider now the RFS defined in equations (2.1). We can divide the state space
into two cells X1 �j� x : cx � 0 � and X2 �g� x : cx � 0 � and a third cell X3 that coincides
with the switching surface S �]� x : cx � 0 � . Of course the origin is an equilibrium
point and we have two more equilibrium points only if cA 	 1b � 0. When cA 	 1b � 0
only origin is an equilibrium point and the trajectory could diverge or could present a
globally stable limit cycle (see Section 2.4).

In RFSs the vector field is discontinuous at the switching surface so it could happen
that there is no solution. In cell X1 the dynamics is ẋ � Ax � b (in the following, for
the sake of simplicity, we will forget the time-dependance of x) so the trajectory tends
towards the switching surface (from a region with cx � 0 towards a surface with cx � 0)
only if cẋ � 0. This means that the vector field points towards the switching surface if
cAx � cb � 0. The hyperplane p kl�I� x : x � S � cAx � cb � 0 � is a n � 2 dimensional
surface that identifies the boundary between the region in which the vector field in X1
points towards the switching surface and the region in which it points opposite to the
switching surface. In an analogous way we can define p 	 � � x : x � S � cAx � cb � 0 � .
Hence the vector field in X1 points towards S if and only if cAx �i� cb while the vector
field in X2 points towards S if and only if cAx � cb. Considering the signum of cb we
have the cases reported in Figure 2.5.

If cb � 0 we have p 	nm p k but it could be that there are still multiple fast switches
(Johansson et al. 1999). So, in order to guarantee the existence of a solution for the
relay feedback systems, we need that the first non-vanishing Markov parameter is pos-
itive: cAkb � 0 where k � 0 � 1 ��
�
�
�� n � 1 is the smallest number such that cAkb c� 0. In
this thesis we will assume that the previous condition always is satisfied.

1 � cA 	 1b Equilibrium points��� R x1 � x2 � x3��� R � and � R x1� R x2�I� R x2 m x3� R x2 m x1

Table 2.1: Different cases of equilibrium points for an asymmetric saturation system.
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Figure 2.5: Existence of solutions in RFSs.

2.4 Periodic solutions
RFSs, as several others nonlinear systems, can present limit cycles (see Section A.6).
The RFS defined in equations (2.1) can present symmetric (see Section A.6) limit cycle.
In fact if x � � t � is a solution of equations (2.1), also � x � � t � is solution. We call unimodal
limit cycle a periodic solution that presents only two switchings per period.

However a symmetric RFS can present also asymmetric limit cycles(Varigonda and
Georgiou 2001).

Let us assume that the RFS has a symmetric unimodal periodic solution of period
p, which means that

x
�
t � p � 2 ���?� x

�
t ����� t � 0 �

and that the solution switches only twice per period. To analyse this oscillation, it is no
restriction to consider the system

ẋ
�
t ��� Ax

�
t �� b rel

�
cx ���

with initial conditions at t � 0 such that cx
�
0 ��� 0 and ċx

�
0 �>� 0. Then,

ẋ
�
t ��� Ax

�
t �H� b � 0 D t � p � 2 (2.12a)

ẋ
�
t ��� Ax

�
t �� b � p � 2 D t � p 
 (2.12b)

It follows that

x
�
p � 2 ��� eAp � 2x

�
0 ��� A 	 1 � eAp � 2 � I � b � (2.13)

where we assume that A is invertible. (If A is not invertible, one can still derive x
�
p � 2 �

but for simplicity we do not consider that case.) Since the periodic solution is assumed
to be symmetric, we have

x
�
p � 2 ���?� x

�
0 ��� eAp � 2x

�
0 �H� A 	 1 � eAp � 2 � I � b � (2.14)

and thus

x
�
0 �B� � eAp � 2 � I � 	 1A 	 1 � eAp � 2 � I � b 
 (2.15)

It is now possible to derive the following existence result, cf., (Åström 1995, Varigonda
and Georgiou 2001).

Proposition 2.4.1 The RFS has a symmetric unimodal periodic solution with period p
if and only

c
�
eAp � 2 � I � 	 1A 	 1 � eAp � 2 � I � b � 0
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and

ceAt � eAp � 2 � I � 	 1A 	 1 � eAp � 2 � I � b � cA 	 1 � eAt � I � b � 0 � 0 � t � p
2



Next we investigate the stability of the periodic solution. Introduce the maps

g
�
t � x ��� eAtx � A 	 1 � eAt � I � b � µ

�
t � x ��� cg

�
t � x ��


For an initial point x
�
0 ��� x0, denote the first switching instant for RFS by t ��� t � � x0 � .

Then,

x
�
t � �B� g

�
t � � x0 ��� eAt � x0 � A 	 1 � eAt � � I � b � : N

�
t � � x0 � M

�
t � ��� (2.16)

where notations N and M are introduced for convenience. The switching constraint is

µ
�
t � � x0 ��� 0 
 (2.17)

Since the switching instant t ��� t � � x0 � is a function of the initial condition x0, we
can evaluate the partial derivative of (2.16) with respect to x0 by using the theorem of
implicit functions, and thus derive the following Jacobian evaluated at

�
t � x ��� � t �h� x0 � :

J � ∂g
∂x
� ∂g

∂ t
V ∂ µ

∂ t X 	 1 ∂ µ
∂x

(2.18)

where

∂g
∂x
� N
�
t � � (2.19)

∂g
∂ t
� ∂N

�
t �;�

∂ t
x0 � ∂M

�
t ���

∂ t
(2.20)

∂ µ
∂ t
� c

∂g
∂ t

(2.21)

∂ µ
∂x
� c

∂g
∂x
� cN

�
t � ��
 (2.22)

By evaluating the equations above, we obtain the following stability result.

Proposition 2.4.2 A symmetric unimodal periodic solution defined by Proposition 2.4.1
is stable if all eigenvalues of the Jacobian

J ��� I � wc
cw � eAt � � w ��� I � eAt � � 	 1

eAt � � � 2b �
are in the open unit disc. It is unstable if at least one eigenvalue of J is outside.

By applying Propositions 2.4.1 and 2.4.2, we can thus prove the existence and the
stability of a periodic solution for the RFS.



Chapter 3

Dithered Relay Feedback
Systems

Dithering is a commonly used technique that engineers apply in several fields usually
in order to overcome bad effects due to the presence of nonlinearities in a system.

For example dithering is used to reduce the effects of quantization noise on speech
and visual signals converted by an Analog-to-Digital Converter (ADC). ADCs have a
static characteristic (quantizer) strongly nonlinear. The nonlinearity introduces effects
such as harmonics, spurious tones, chaos, etc. Dithering contributes to reduce this
effects (Gray and Stockham 1993, Wannamaker 1997, Wannamaker et al. 2000b). The
technique consists in adding a signal (dither) to the input of the quantizer nonlinearity
such that the averaged output has a “more linear” behaviour (Wagdy 1989, Wagdy and
Goff 1994). In this way we can attenuate spurious tones, we can eliminate chaotic
effects or quenching limit cycles. Dither signal can be a deterministic or a stochastic
signal (Carbone and Petri 2000).

Dithering is used also in feedback control systems (Zames and Shneydor 1976,
Zames and Shneydor 1977, Mossaheb 1983) in which some nonlinearities are intrinsi-
cally present in physical systems or control devices. For example friction is a typical
nonlinear phenomena that induces a “stick-slip” behaviour. Dithering contributes to re-
duce this problem (Feeny and Moon 2000). In physics literature a phenomena known
as stochastic resonance can be viewed also as an effect due to dithering that “linearize”
nonlinearities (Wannamaker et al. 2000a). Dither is often used in physics also for
controlling chaotic systems (Fuh and Tung 1997, Morgül 1999).

3.1 Dithering principles
The basic principle of dithering is that if we add a suitable high frequency signal to the
input of a nonlinearity, the averaged input-output relation is “smoothed”. Of course this
effect depends on the features of the dither signal. In fact, by sweeping quickly back
and forth across the domain of the nonlinear element, a dither smoothes the nonlinear
element prior to being filtered out, in effect making it less nonlinear in some sense.

There are two different approaches to dithering: stochastic and deterministic dither-
ing. The stochastic approach consists in adding a random signal with some statistical
properties (mean value, variance, probability density function, etc.). The performance
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Figure 3.1: Relay nonlinearity with dither.

of a stochastic dithering system is evaluated by using the expectation value of the non-
linearity’s output. For stationary and ergodic stochastic processes, the expectation is
computed by the usual time average operation. The deterministic approach consists in
adding a periodic (or quasi periodic) signal with some properties (mean value, shape
of the signal, amplitude distribution, etc.). In this case the performance is evaluated by
computing the time average (on a dither period) of the nonlinearity’s output.

Both approaches are used in practice even if in signal processing applications (in
particular analog-to-digital conversion) the stochastic approach is more immediate for
the evaluation of parameter such as signal-to-noise ratio, power spectrum, etc. It is
clear that in both cases an averaging operation (time averaging for deterministic case
and expectation for stochastic case) is the basic cause of the smoothing effect.

3.2 Smoothed nonlinearity and Amplitude Density Func-
tion

Let us consider a relay nonlinearity with a dither signal δ added at the input z (Fig-
ure 3.1). In the deterministic approach the dither signal δ is periodic (or quasi-periodic,
(Zames and Shneydor 1976)) of period p. We evaluate the time averaging of the output
y on a dither period p by assuming z constant:

N
�
z �>� 1

p � p

0
rel
�
z � δ

�
t ��� dt 
 (3.1)

Of course the function N
�
z � (called averaged or smoothed nonlinearity) depends on

the signal δ and its shape (if it is a square wave, a sawtooth, a sinusoid, etc.).
By using a stochastic approach we consider z a deterministic variable and δ a ran-

dom variable with a given Probability Density Function (PDF) fδ
�
δ � . Then the ex-

pected output is

E < y = � � ∞	 ∞
rel
�
z � δ � fδ

�
δ � dδ 
 (3.2)

If δ
�
t � is a stationary stochastic process, since rel is a static nonlinearity, then y

�
t �

is a stationary stochastic process (Papoulis 1991). Then

E < y � t � = � � ∞	 ∞
rel
�
z � δ

�
t ��� fδ

�
δ � dδ 
 (3.3)

If, moreover, y
�
t � is ergodic (Papoulis 1991), we can evaluate the expectation as
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E < y � t � = � lim
p � ∞

1
2p � p	 p

rel
�
z � δ

�
t ��� dt 
 (3.4)

If we introduce the Amplitude Density Function (ADF1) of the periodic determin-
istic signal δ

�
t � , we can obtain an expression similar to (3.2) which is valid in a deter-

ministic framework and replaces (3.1).
The dither signal δ is a periodic function of time so we can consider its restriction

to a single period:
δ : < 0 � p ="�� D 


By considering the integral in (3.1) as a Lebesgue integral, it follows (Taylor 1966)
that

N
�
z ��� � D rel

�
z � a � fδ

�
a � da (3.5)

where fδ
�
a � is the Amplitude Density Function of δ and it is defined as

fδ
�
a ��� dFδ

�
a �

da
(3.6)

where Fδ
�
a � is the Amplitude Distribution Function:

Fδ
�
a ��� 1

p
µ � δ D a � (3.7)

with µ � δ D a � Lebesgue measure of the time sets in which δ
�
t ��D a.

The Amplitude Density Function and Amplitude Distribution Function satisfy the
same property of, respectively, Probability Density Function and Cumulative Distri-
bution Function (for example, Fδ is right continuous). It is clear that if we use (3.5)
instead of (3.1), we have no difference in operating for the computation of the (time
or stochastic) averaging of the nonlinearity. In general, if n

�
z � is the static nonlinearity

and we add a dither δ at the input, the averaged nonlinearity is

N
�
z ��� � D n

�
z � δ � fδ

�
δ � dδ� � ∞	 ∞

n
�
z � δ � fδ

�
δ � dδ (3.8)

where fδ is the ADF (or PDF) of δ if we use a deterministic (or stochastic) dithering.
In this thesis we will consider only deterministic dithering. Similar tools can be

used for stochastic dithering analysis.
If we consider dither signals symmetrically distributed with respect to the origin,

i.e. fδ
� � δ ��� fδ

�
δ ��� δ , (3.8) assumes a particular form:

N
�
z �>� � ∞	 ∞

n
�
z � δ � fδ

�
δ � dδ � n

�
z �b� fδ

�
z �;
 (3.9)

Equation (3.9) shows that the averaged nonlinearity can be computed as the convolution
of the original nonlinearity and the ADF of the dither signal.

1In (Zames and Shneydor 1976) ADF acronym is used instead for denoting the Amplitude Distribution
Function.
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When the original nonlinearity is the relay nonlinearity rel
�
z � , Equation (3.8) be-

comes

N
�
z �B� � ∞	 ∞

rel
�
z � δ � fδ

�
δ � dδ� � ∞	 z � fδ

�
δ � dδ � � 	 z �	 ∞

fδ
�
δ � dδ� 1 � 2 � 	 z �	 ∞

fδ
�
δ � dδ � � 	 z �	 z � fδ

�
δ � dδ 
 (3.10)

In this way, given Fδ
�
z � the Amplitude Distribution Function (or Cumulative Dis-

tribution Function) of the dither signal δ , the smoothed nonlinearity of a relay dithered
with δ is

N
�
z �>� 1 � < Fδ

� � z
k �b� Fδ

� � z 	 � = 
 (3.11)

If F
�
z � is continuous in � z then N

�
z �>� 1 � 2Fδ

� � z � otherwise, when fδ is impulsive
in � z, we have to take into account the left and right limits of Fδ in � z.

In conclusion we have three different approaches for computing the smoothed non-
linearity for a relay dithered with a deterministic periodic signal: we can compute the
time averaging (3.1), we can use the convolution operation (3.9) or relation (3.11).

3.2.1 Triangular
An example of a dither signal, which we will study in detail, is a triangular waveform
of amplitude A � 0 and period p � 0, i.e., δ

�
t � p ��� δ

�
t � for all t and

δ
�
t ���

������� ������
4A
p

t � t ��< 0 � p � 4 �� 4A
p

t � 2A � t ��< p � 4 � 3p � 4 �
4A
p

t � 4A � t ��< 3p � 4 � p ��
 (3.12)

Triangular waveform is an odd function (δ
�
t �¡�¢� δ

� � t � ) so it has a zero mean
value (as all other dither signals we consider in this thesis). It is not difficult to show
that the Amplitude Density Function for triangular waveform is the rectangular win-
dow function reported in Figure 3.2:

ΠA
�
z �B�¢£ 1

2A C z C¤D A
0 C z CF� A


 (3.13)

Of course the corresponding stochastic dither is a random variable with a uniform PDF.
For the triangular dither, it is easy to show (by applying the time averaging defini-

tion or by using the convolution product or the Equation (3.11)) that

N
�
z ��� sat

�
z � A ��� ��� �� � 1 � z ��� A

z � A � C z CED A� 1 � z � A 
 (3.14)

We can note that now N
�
z � is Lipschitz (with Lipschitz constant equal to 1 � A) while

the original relay nonlinearity was discontinuous. Dither has “smoothed” the relay, and,
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Figure 3.2: Triangular dither: waveform and its ADF.

in fact, the equivalent or averaged nonlinearity is called smoothed nonlinearity2 since
the smoothness property of dither is a general property (Zames and Shneydor 1976).

3.2.2 Sawtooth
In this case a sawtooth waveform dither of amplitude A and period p is the signal
(restricted to the single period):

δ
�
t ��� 2A

p
t � A � t ��< 0 � p �;
 (3.15)

The signal has the same ADF of the triangular dither. It presents a discontinuity in
t � kp and has a time derivative constant and equal to 2A � p while for triangular dither
the time derivative oscillates between 4A � p and � 4A � p.

Since the sawtooth dither has the same ADF of the triangular dither, the corre-
sponding smoothed nonlinearity is the same. We have smoothed the original nonlin-
earity (that is discontinuous) obtaining a continuous nonlinearity. It is worth to note
that the dither amplitude A affects the gain of the saturation: higher the amplitude is,
lower is the gain.

2It is worth to note that the attribute smoothed is not referred to functions infinitely continuous with their
derivatives.
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Figure 3.3: Square wave dither: waveform and its ADF.

3.2.3 Square wave
A square wave dither of period p is

δ
�
t �B� £ � A t ��< 0 � p � 2 �� A t ��< p � 2 � p ��
 (3.16)

In this case the Amplitude Density Function is fδ
�
z �¼� 0 
 5δ̃

�
z � A �F� 0 
 5δ̃

�
z � A � where

δ̃ is the Dirac impulse (see Figure 3.3). The presence of Dirac impulses is due to the
fact that the Amplitude Distribution Function is discontinuous. That is similar to the
case of random variables where the presence of impulses in the PDF is due to the
discontinuity of the CDF.

In general if a signal assumes a constant value for a time interval of non zero mea-
sure, the ADF presents some Dirac impulses (analogously to discrete random vari-
ables). So dither signals with zero-slope time interval, generate Dirac impulses in their
Amplitude Density Functions.

In this case, given the impulsive Amplitude Density Function of the square wave
dither, the smoothed nonlinearity can be simply computed (by using the convolution
product) as N

�
z ��� 0 
 5n

�
z � A �b� 0 
 5n

�
z � A � (see Figure 3.4):

N
�
z �>�

�������� �������
� 1 � z ��� A� 0 
 5 z �I� A
0 � C z CE� A
0 
 5 z ��� A� 1 � z � A 
 (3.17)
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Figure 3.4: Square wave dither signal (upper diagram) and the corresponding smoothed
nonlinearity N

�
z � (lower diagram).

The smoothed nonlinearity is still discontinuous: now we have two jumps in z �i� A
and z �a� A. On the other hand, N

�
z � lies in a nonlinear sector narrower than the

original one (n
�
z � lies in < 0 � ∞ � ) such as predicted by (Zames and Shneydor 1976).

When the ADF of a dither signal presents some impulses, the smoothed nonlinearity
of the dithered relay has some discontinuities. Since a dither with time intervals in
which the signal is constant (dithers with zero-slope intervals, see Section 4.5) has
Dirac impulses in its ADF, this class of dither signals has to be carefully used in Relay
Feedback Systems.

3.2.4 Trapezoidal
A trapezoidal signal is a square waveform without discontinuities: we have a high slope
from the positive value to the negative.

δ
�
t ���

������� ������
� A t �Ì< 0 � p � 2 � ∆ �� 2

A
∆

t � Ap
∆
� A t �Ì< p � 2 � ∆ � p � 2 �� A t �Ì< p � 2 � p � ∆ �

2
A
∆

t � 2Ap
∆
� A t �Ì< p � ∆ � p �;
 (3.18)
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Figure 3.5: Trapezoidal dither: waveform and its ADF.

In this case the ADF is (see Figure 3.5) the sum of two Dirac impulses in � A and� A (due to the zero slope time interval as for the square wave case) and a rectangular
windows due to the high slope time interval:

fδ
�
z �B� � 0 
 5 � ∆ � p ��Û δ̃ � z � A �� 0 
 5δ̃

�
z � A �ÝÜ>� � 2∆ � p � ΠA

�
z ��


We have both the effects of a triangular and a square wave dither; the smoothed
nonlinearity, computed again by using the convolution, is (see Figure 3.6):

N
�
z �B�

�������� �������
� 1 � z ��� A� 0 
 5 � ∆ � p z �I� A
2∆z � � pA �;� C z C¤� A
0 
 5 � ∆ � p z ��� A� 1 � z � A 
 (3.19)

3.2.5 Sinusoidal
Of course a sinusoidal dither is

δ
�
t ��� Asin V 2π

p
t X 
 (3.20)

It is a continuous signal without zero-slope time interval: the time derivative is
zero only in some time instants (t � p � 4 and t � 3p � 4), so their Lebesgue measure
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Figure 3.6: Trapezoidal dither signal (upper diagram) and the corresponding smoothed
nonlinearity N

�
z � (lower diagram).

is zero. Then we expect an ADF without impulses. We can compute the Amplitude
Distribution Function and then differentiate it in order to obtain the ADF.

It is not difficult to show that

Fδ
�
z ��� ���� ��� 0 z �G� A

1
2
V 1 � 2

π
sin 	 1 z

A X C z CFD A

1 z � A

(3.21)

and, by differentiating (3.21),

fδ
�
z �B� ���� ��� 0 C z C¤� A

1
Aπ

1ñ
1 � � z

A � 2
C z CF� A 
 (3.22)

Since in this case the Amplitude Distribution Function is continuous, we can use
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the third way for computing the smoothed nonlinearity:

N
�
z ��� 1 � 2F

� � z �
� ���� ��� � 1 z ��� A

2
π

sin 	 1 z
A
C z CFD A

1 z � A 
 (3.23)

It should be noticed that in some cases computations of averaged (or equivalent)
nonlinearities are simpler if we use the convolution rule (3.9) or the rule of Equa-
tion (3.11) valid for relay nonlinearities.

3.3 Dither in Feedback Systems
We saw that the averaged effect of injecting a dither signal at the input of a nonlinearity
can be analysed by looking at the equivalent nonlinearity. In practice, if we put an
averaging operation at the output of the nonlinearity, the overall system is equivalent
to the averaged nonlinearity.

But what happens when we put dither in feedback systems? Intuition suggests
that a Linear Time Invariant System can operate as a smoothing and thus also as an
averaging operator if it is sufficiently low pass, so it seems interesting to study effects
of dither in feedback systems.

The seminal work for studying dither in feedback systems was carried on by Zames
and Shneydor (Zames and Shneydor 1976, Zames and Shneydor 1977).

In their work Zames and Shneydor use an input-output framework to prove that
dither affects stability of nonlinear systems. Essentially they show that an input-output
analysis of the dithered system can be derived by looking at the smoothed system.
In practice the dithered system is ò 2 bounded if the smoothed system is bounded on
the Sobolev space3 S2p and the dither period is sufficiently high with respect to some
parameters function of the frequency response of the linear part of the dithered system.

A different approach for studying dither in nonlinear system was used by Mossa-
heb. In (Mossaheb 1983) it has not been used an input-output approach but a classical
averaging method for showing that a sufficiently high frequency dither can make ar-
bitrarily close the state of the dithered system and the state of the smoothed system.
Mossaheb studied in particular the class of triangular dither signals showing that a tri-
angular signal always linearizes a saturating odd nonlinearity. Zames and Shneydor’s
work and Mossaheb’s work are valid only for Lipschitz nonlinearities4. But in control
systems some non Lipschitz nonlinearities are used. For example the relay is a typical
non Lipschitz nonlinearity.

The main contribute of this thesis is to extend Mossaheb’s results to the case of
relay feedback systems. So in this Section we will give some notations for dithered
RFSs.

The dithered system is the relay feedback system

ẋ
�
t ��� Lx

�
t �� bn

�
cx
�
t �� r

�
t �b� δ

�
t ����� x

�
0 �B� x0 
 (3.24)

3The Sobolev space S2p is the set of functions f ó t ô S2p
eöõ f : f ó 0 ô e 0 ÷ f ó t ôEf�ø 2 u̇ ó t ô¤f¡ø 2 ù with normú

f
ú

2p
e ó ú f ú 2 û p � 1 ú f ú 22 ô 1 ü 2.

4For sake of truth Mosshaeb assumes that the original nonlinearity is absolutely continuous, but a relay
does not satisfy this property.
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Figure 3.7: Dithered system.

Here L, b, and c are constant matrices of dimensions q � q, q � 1, and 1 � q, respec-
tively. The nonlinearity n : � � � is given by the relay characteristic

n
�
z ��� rel

�
z ��� ��� �� 1 � z � 0

0 � z � 0� 1 � z � 0 

In Figure 3.7 a block diagram of the dithered system is reported. It is worth to note

that the negative feedback is highlighted by defining the transfer function of the linear
system G

�
s �B� � c

�
sI � L � 	 1b and considering as output y

�
t ���?� cx

�
t � .

The signal r
�
t � is the external reference and it is assumed to be Lipschitz continu-

ous, i.e., there exists a constant Mr � 0 such that C r � t1 �H� r
�
t2 �hC¤D Mr C t1 � t2 CÈ� � t1 � t2.

The dither signal δ : < 0 � ∞ � � � is periodic and of high frequency compared to the
linear dynamics. It should be pointed out that the results that will be presented in this
thesis depend on the shape of the dither signal. Dither signals with zero slope for non-
vanishing time intervals, such as the square wave, are sometimes unpredictable. This
is in contrast to systems with Lipschitz continuous dynamics, where the form of the
dither signal is not critical (Zames and Shneydor 1976, Zames and Shneydor 1977).

The relay feedback system is assumed to have a solution x : < 0 � ∞ � � � n (in a
classical sense), which on every compact subinterval of < 0 � ∞ � is C1 everywhere except
at finitely many points. We sometimes use the notation x

�
t � x0 � for the solution of

(3.24). We use C��¤C to denote the Euclidean norm of a vector and ����� to denote the
corresponding induced matrix norm.

The smoothed relay feedback system is defined as

ẇ
�
t ��� Lw

�
t �� bN

�
cw
�
t �� r

�
t ���;� w

�
0 ��� w0 � (3.25)

where the smoothed nonlinearity N : � � � is the average N
�
z �¼� p 	 1 � p

0 n
�
z � δ

�
t ��� dt.

If the dither signal has an even Amplitude Density Function, we can evaluate the
smoothed nonlinearity also as a convolution product: N

�
z ��� n

�
z �� fδ

�
z � .

It will be shown in Chapter 4 that the smoothed system in many cases is a good
approximation of the dithered relay feedback system. Therefore analysis and design
can be performed on the smoothed system, which is often easier to treat, and then be
carried over to the dithered system.

Note that the term “smoothed system” (which is standard in the literature on dither)
refers to that the nonlinear sector is narrowed by the dither signal. The nonlinearity is
not necessarily C∞, as illustrated above by different dither signals.
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Figure 3.8: Output � cx of the relay feedback system (3.24) with (3.26) but without
dither signal (δ m 0).

3.4 Motivating examples
We present here some examples and simulations to illustrate effects of different dither
signals on relay feedback systems.

3.4.1 Averaging
A second-order relay feedback system is used as a representative example. Consider
the system (3.24) with

L �_V � 2 � 1
1 0 X � b �_V 10 X � c �¢Y 1 � 1 [ 
 (3.26)

The linear part of the relay feedback system thus has a nonminimum-phase zero at 1
and a double pole at � 1. When no dither is present (δ

�
t � m 0), the relay feedback

system presents a limit cycle as reported in Figure 3.8. The output 5 of the linear part� cx of (3.24) is plotted for a solution with initial condition x0 �¢Y 2 1 [ T .
If we apply a triangular dither signal δ with amplitude A � 1 and period p � 1 � 50,

the limit cycle in Figure 3.8 is dissolved as shown in Figure 3.9. Hence, the dither
in a sense attenuates the oscillations present in the original system. Figure 3.9 shows
also the output � cw of the smoothed system (3.25). The two systems have almost
identical responses. Hence, although the output of the dithered system oscillates due
to the presence of the dither, the smoothed system provides an accurate approximation
of the dithered system for p � 1 � 50. Figure 3.10 shows the responses when the dither
signal has a larger period: p � 1. The responses are no longer close but the oscillations
in the output of the dithered system (solid) are still due to the forcing dither and not to
a limit cycle such as that in Figure 3.8.

5It is worth to note that the minus signum introduced in the output (as previously said in Section 3.3)
gives the opposite of the typical response of a nonmimimum-phase linear system.
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Figure 3.9: Outputs of the dithered relay feedback system (3.24) (solid) and the
smoothed system (3.25) (dashed). The responses are almost identical.

The simulations suggest that the dither period p is related to how accurately the
smoothed system approximates the dithered system. In next section it is shown that by
choosing p sufficiently small the approximation can be made arbitrarily tight (Theo-
rem 4.1.1). Regarding the dither amplitude A, note that the smoothed system above is
unstable for A � 1 � 2, since the closed-loop system is linear with characteristic poly-
nomial equal to s2 � � 2 � A 	 1 � s � 1 � A 	 1 when C cw CE� A. The dither amplitude hence
defines the response dynamics. This is shown in next chapter by relating A to the
stability of the dithered system (Theorem 4.2.1).

3.4.2 Zero slope dither signals
Some interesting effects arise when relay feedback systems are dithered with signals
that have zero time derivative in a time interval of nonzero measure. A well known
class of such signals is the square wave. As a motivating example let us consider the
system (3.24) with δ a square wave dither of period p and amplitude A, and a constant
external reference r � R.

Figure 3.11 shows the output of the relay feedback system dithered with a square
wave and the output of the corresponding smoothed system. By decreasing the dither
period the shape of the waveforms doesn’t change and the limit cycle (that presents
a smooth interval and a switching interval) still remains. This example shows that in
this case the dither does not give a similar result as in the triangular dither case (i.e.,
the error between the dithered and smoothed system does not decrease as p becomes
smaller and smaller).

One could conjecture that the averaging doesn’t work for a dither signal with time
derivative equal to zero in a time interval of non null measure. In fact this is the case of
the just shown square wave dither signal. With similar considerations we can consider
the case of a dither signal that isn’t discontinuous (as the square wave) but presents
some zero derivative time intervals.

Let us consider the trapezoidal dither signal (Figure 3.6). The smoothed and the
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Figure 3.10: Outputs of the dithered relay feedback system (3.24) (solid) and the
smoothed system (3.25) (dashed). Similar simulation as in Figure 3.9 but with dither
signal having 50 times longer period. Note the deviation between the responses.

dithered system outputs waveforms are highly different in time, see Figure 3.12. We
can see that the stationary behaviour of the systems is periodic and the period of the
smoothed system output is different from the period of the dithered system output. On
the other hand it is simple to show that the trajectories of the smoothed and dithered
systems present phase plane portraits close to each other. This example will inspire
the investigation of the averaging analysis also in the presence of limit cycles for the
smoothed system.
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Figure 3.11: Outputs of the dithered relay feedback system (solid) and the smoothed
system (dashed) with dither period p � 1 � 50, dither amplitude A � 1 and external
reference r

�
t ��� R � 1. The dither signal is a squarewave.
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Figure 3.12: Outputs of the dithered relay feedback system (solid) and the smoothed
system (dashed) with the trapezoidal dither of Figure 3.6 (p � 1 � 50, A � 1, ∆ � p � 10)
and external reference r

�
t ��� R � A � 2∆ � p.



Chapter 4

Averaging analysis of dithered
Relay Feedback Systems

In this chapter we will derive the main results on the analysis of dithered relay feedback
system by looking at the smoothed system:

ẋ
�
t ��� Lx

�
t �b� bn

�
cx
�
t �� r

�
t �� δ

�
t ���;� x

�
0 ��� x0 (4.1a)

ẇ
�
t ��� Lw

�
t �� bN

�
cw
�
t �� r

�
t ����� w

�
0 ��� x0 � (4.1b)

where n
� � � is a relay and

N
�
z �B� 1

p � p

0
n
�
z � δ � dt � sat

�
z � A ��


The smoothed nonlinearity depends on the dither signal (as shown in Chapter 3).
By considering triangular dither signal, the first result is on accurate approximation

over compact time intervals and the second is on practical stability. These two results
are then combined to obtain a result on approximation over infinite time horizon. The
proofs do not fully exploit the particular structure of the smoothed system and the re-
sulting bounds on the dither period are conservative. In Theorem 5.2.1 we obtain much
tighter bounds by using linear matrix inequalities (LMI) to characterize the structural
properties of the system. The same averaging and stability results for dithered systems
with sawtooth dither signals can be proved also in the case of sawtooth waveforms (see
Remark 4.1.1 in Section 4.1). As an interesting point in Section 4.6 we show that the
averaging approach eventually fails for square wave dither signals.

4.1 Averaging theorem
The following theorem states that by choosing the dither period p of the triangular
dither sufficiently small, it is possible to make the solution x

�
t � of the relay feedback

system arbitrarily close to the solution w
�
t � of the smoothed system on any compact

time interval.

Theorem 4.1.1 Let T � ε � 0 and x0 � � n be given. Assume that r
�
t � is Lipschitz on< 0 � T = with Lipschitz constant Mr. There exists p0 � 0 such that if p � � 0 � p0 � , thenC x � t � x0 ��� w

�
t � x0 �hC¤D ε for all t ��< 0 � T = .
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Proof: Consider the dithered system and the smoothed system on the time interval< 0 � T = and with w
�
0 �B� x

�
0 ��� x0:

ẋ
�
t ��� Lx

�
t �b� bn

�
cx
�
t �� r

�
t �� δ

�
t ���;� x

�
0 ��� x0 (4.2a)

ẇ
�
t ��� Lw

�
t �� bN

�
cw
�
t �� r

�
t ����� w

�
0 ��� x0 � (4.2b)

with N
�
z �>� sat

�
z � A � .

Note that the right-hand side of (4.2a) is bounded on every compact time interval< 0 � T = , so there exists a positive constant My such that C cẋ
�
t ��CFD My, for all t � < 0 � T = :C cẋ

�
t �hC�� C cLx

�
t �b� cbn

�
δ
�
t �� cx

�
t �� r

�
t ���"CD?C cLeLt C���C x0 C�� � t

0

��� cLeL � t 	 s � b ��� ds �gC cb C 
 (4.3)

My
�
x0 � : � sup

t ��� 0 @ T � � C cLeLt C���C x0 C�� � t

0

��� cLeL � t 	 s � b ��� ds �gC cb C � 
 (4.4)

Moreover by hypothesis r
�
t � is Lipschitz:C r � t1 ��� r
�
t2 ��C¤D Mr C t1 � t2 CÈ��� t1 � t2

Then we introduce M � My � Mr.
By integrating the two members of (4.2), we obtain

x
�
t �H� w

�
t ��� � t

0
< Lx
�
s �� bn

�
cx
�
s �b� r

�
s �� δ

�
s ��� = ds� � t

0
< Lw
�
s �� bN

�
cw
�
s �� r

�
s ��� = ds� L � t

0
< x � s �H� w

�
s � = ds� b � t

0
< n � cx

�
s �b� r

�
s �� δ

�
s ���H� N

�
cw
�
s �� r

�
s ��� = ds 
 (4.5)

The idea now is to show that the integral � t
0 < n � cx

�
s �� r

�
s �� δ

�
s ��� = ds can be approxi-

mated by � t
0 N
�
cx
�
s �� r

�
s ��� ds. The error introduced by this approximation is a func-

tion of the dither period p. We will show that it can be made small by decreasing the
period p. This is not obvious, particularly, since n is a discontinuous nonlinearity.

We first evaluate the term � t
0 < n � cx

�
s �� r

�
s �� δ

�
s ��� = ds. If we introduce m � � T � p ! ,

the largest integer such that mp D T , then

� t

0
n
�
cx
�
s �� r

�
s �� δ

�
s ��� ds � m 	 1

∑
k " 0 � � k k 1 � p

kp
n
�
cx
�
s �b� r

�
s �� δ

�
s ��� ds

� � mp k ∆t

mp
n
�
cx
�
s �� r

�
s �� δ

�
s ��� ds � (4.6)

with ∆t � T � mp. Since n is a bounded function and the time interval of the last
integral in (4.6) has a Lebesgue measure less than p, we can write

� t

0
n
�
cx
�
s �� r

�
s �b� δ

�
s ��� ds � m 	 1

∑
k " 0 � � k k 1 � p

kp
n
�
cx
�
s �� r

�
s �b� δ

�
s ��� ds � V0

�
t � (4.7)



4.1 Averaging theorem 31

#%$'&)(+*',.-0/�&)12,

#2$3&4(5*6,

789

9 :2; :�< =5> ? = > @

#2$A&)(%*A,

7
BDCFEHGDIKJMLONQPDR

S%TVU)W�X3Y[Z]\�U_^2Y�Z0`ba%^
c
d

ef
g

Figure 4.1: Time diagrams of the signals.

with CV0
�
t ��CFD p. Each term in the sum can be written as

� � k k 1 � p
kp

n
�
cx
�
s �� r

�
s �� δ

�
s ��� ds� � � k k 1 � p

kp
n
�
cx
�
kp �� r

�
kp �� δ

�
s ��� ds� � � k k 1 � p

kp
< n � cx

�
s �� r

�
s �� δ

�
s ���H� n

�
cx
�
kp �� r

�
kp �� δ

�
s ��� = ds� pN

�
cx
�
kp �b� r

�
kp ���� � p

0
< n � cx

�
s � kp �� r

�
s � kp �� δ

�
s ���H� n

�
cx
�
kp �� r

�
kp �� δ

�
s ��� = ds 
 (4.8)

Figure 4.1 illustrates the evolution for one dither period interval. In the top diagram, the
solid lines bound cx

�
s � kp �"� r

�
s � kp �"� δ

�
s � , 0 D s D p. The dashed line is cx

�
kp �"�

r
�
kp � � δ

�
s � . The figure presents all possible cases for the evolution of cx � r � δ , in

the sense that the envelope has the same characteristics as long as the point R is above
the point S. It is not difficult to show that this is equivalent to that the relation

p � 1
7
� 4A

M
� : p̄ (4.9)

holds. In the following we assume that p is chosen such that (4.9) holds.
All possible cases correspond to different values of cx

�
kp �!� r

�
kp � or, equivalently,

all possible cases can be obtained by shifting the horizontal s-axis upward and down-
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ward in the top diagram of Figure 4.1. We have three cases:��� �� 0 D cx
�
kp �� r

�
kp � Region 1 �

cx
�
kp �� r

�
kp �>D 0 D cx

�
kp �� r

�
kp �� Mp Region 2 �

cx
�
kp �� r

�
kp �� Mp D 0 Region 3 


The regions are illustrated on the right side of Figure 4.1 by the location of the s-axis
for the three cases. The partition identifies the time intervals, during which the signal
cx
�
s � kp �"� r

�
s � kp �"� δ

�
s � can have a zero-crossing. It is only during these intervals

the integrand function in (4.8) can be non-zero. Introduce Ii to denote the sum of the
lengths of these intervals for Region i, as further described below. Next we discuss
each region separately.

Region 1: For the first region, I1 can be the sum of at most two time intervals:< τ1 � τ2 = and < τ h1 � τ h2 = , say. Since the considered signals are piecewise linear, the time
instants τ1 and τ2 can be derived as

τ1 �]V 1
2
� cx
�
kp �� r

�
kp �

4A X p
1 � Mp � � 4A � (4.10a)

τ2 �]V 1
2
� cx
�
kp �� r

�
kp �

4A X p
1 � Mp � � 4A � � (4.10b)

and, analogously,

τ h1 � V 1 � cx
�
kp �� r

�
kp �

4A X p
1 � Mp � � 4A � (4.11a)

τ h2 �]V 1 � cx
�
kp �� r

�
kp �

4A X p
1 � Mp � � 4A � 
 (4.11b)

Note that if the s-axis is below the point S, we have only one time interval. However,
since we are only interested in an upper bound of I1, we can consider the worst case,
i.e., the case discussed previously. Moreover, if the s-axis is above the point R, then τ h2
is less than p. However, we can still consider the previous expression, since the time
interval < τ h1 � τ h2 = derived above is greater than the effective one.

By considering the Lebesgue measures of the time intervals, we have

τ2 � τ1 �]V 1
2
� cx
�
kp �� r

�
kp �

4A X M
2A
� p2

1 � � Mp � � 4A ��� 2 � (4.12)

and

τ h2 � τ h1 �]V 1 � cx
�
kp �� r

�
kp �

4A X M
2A
� p2

1 � � Mp � � 4A ��� 2 
 (4.13)

Note two facts now: (i) the inequality (4.9) assures that Mp � � 4A � is always less than
one, and (ii) if Mp � � 4A �ji 1 (i.e., p i 4A � M) the region in which the signal cx

�
s �

kp ��� r
�
s � kp ��� δ

�
s � can lie is very small, so we can approximate the signal by

cx
�
kp �� r

�
kp �b� δ

�
s � .

Hence, we have shown that the worst case (largest estimate of I1) is when the in-
tegrand function in (4.8) is different from zero in both intervals < τ1 � τ2 = and < τ h1 � τ h2 = . In
that case we have

I1 � τ2 � τ1 � τ h2 � τ h1 � 3
2
� M
2A
� p2

1 � � Mp � � 4A ��� 2 
 (4.14)
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Region 3: Now we can consider the case in which the s-axis lies in the third region.
The time interval < τ1 � τ2 = is the same as previously in this case. The other possible time
interval < τ h h1 � τ h h2 = can be identified by considering the crossing of the first increasing part
of the envelope through the s-axis. In an analogous way we can calculate the Lebesgue
measure of the interval as

τ h h2 � τ h h1 � � cx
�
kp �b� r

�
kp �

4A
� M
2A
� p2

1 � � Mp � � 4A ��� 2 
 (4.15)

The worst case (through similar arguments as above) is given by

I3 � τ h h2 � τ h h1 � τ2 � τ1 � 1
2
� M
2A
� p2

1 � � Mp � � 4A ��� 2 
 (4.16)

Note that both I1 and I3 are independent from the value of cx
�
kp �F� r

�
kp � . The Lebesgue

measure of the worst-case time interval is the same for all points in the corresponding
region.

Region 2: Finally, we consider the second region. Here we can have a subtle be-
haviour because it might happen that we have to consider three different time intervals.
One of these, however, corresponds to the time interval considered in both Regions 1
and 3. Since we are carrying on a worst case analysis, it is possible to overcome the
“loss of symmetry” by the following bound:

I2 D I1 � I3 � 2 � M
2A
� p2

1 � � Mp � � 4A ��� 2 
 (4.17)

To conclude the discussion on Regions 1–3, note that the worst case I, say, for
all three of them is bounded by the right-hand side of (4.17). It is easy to see that
there exists p � � 0 such that for all p D p � , we have I of ordo p2, i.e., I � O

�
p2 � . In

particular, we may choose

p � � 4A
M
� ` 2

2
� (4.18)

so that

I D 4 � M
2A

p2 ��� p D p � 
 (4.19)

Note that (4.19) follows from (4.9). In conclusion, the estimate of the upper bound
(4.19) is valid for all cases, so hence we have that (4.8) is equal to

� � k k 1 � p
kp

n
�
cx
�
s �� r

�
s �� δ

�
s ��� ds � pN

�
cx
�
kp �� r

�
kp ���b� Z1

�
k �;� p D p̄ � (4.20)

with C Z1
�
k �hCED 8 � M

2A p2.
So far we have mainly considered one period p. Since in (4.7) we have m �k� T � p !

terms, we have

� t

0
n
�
cx
�
s �b� r

�
s �� δ

�
s ��� ds � m 	 1

∑
k " 0

pN
�
cx
�
kp �� r

�
kp ���� V0

�
t �b� V1

�
t �;� (4.21)
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with CV1
�
t ��CD 8 � M

2A T p. For p sufficiently small (or, equivalently, for m sufficiently
large) the sum can be approximated by an integral. The maximum error of the approx-
imation is related to the maximum slope of the signal N

�
cx
�
s �� r

�
s ��� . But N satisfies

the slope condition

0 D �� N � cx
�
s1 �� r

�
s1 ���H� N

�
cx
�
s2 �� r

�
s2 ��� �� D M

A

�� s1 � s2

�� � � s1 � s2 ��< 0 � T = �
(4.22)

which implies

� � k k 1 � p
kp

N
�
cx
�
s �� r

�
s ��� ds � pN

�
cx
�
kp �� r

�
kp ���� Z2

�
k � (4.23)

(with C Z2
�
k ��CED M

2A p2) and, thus,

m 	 1

∑
k " 0

pN
�
cx
�
kp �� r

�
kp ����� � mp

0
N
�
cx
�
s �� r

�
s ��� ds � V2

�
t �� � t

0
N
�
cx
�
s �� r

�
s ��� ds � V2

�
t �� V3

�
t � (4.24)

with CV2
�
t ��CFD M

2A T p and CV3
�
t �hC¤D p.

We have up to now proved that (4.5) can be written as

x
�
t ��� w

�
t ��� L � t

0
< x � s �H� w

�
s � = ds � b � t

0
<N � cx

�
s �� r

�
s ���H� N

�
cw
�
s �� r

�
s ��� = ds� V

�
t ����� p D p̄ (4.25)

where V
�
t ��� b

�
V0
�
t �b� V1

�
t �� V2

�
t �� V3

�
t ��� and CV � t ��CED C b C � p � 8 � M

2A T p � M
2A T p �

p ��� C b C � 92 M
A T � 2 � p. Since N has Lipschitz constant equal to 1 � A, we getC x � t �H� w
�
t ��CFD?Vj� L ��� C b C���C c C

A X � t

0
C x � s �H� w

�
s �hC ds � O

�
p ��� p D p̄ � (4.26)

where

O
�
p ��� V 9

2
� M

A
T � 2 X C b C p 
 (4.27)

Now, by applying the Grönvall-Bellman Lemma (Sastry 1999) to (4.26), we get for all
p D p̄,C x � t �H� w

�
t ��CFD O

�
p �� � t

0

� Vl� L ��� C b C���C c C
A X � O

�
p � e m tτ n�o L o kqp b p r p c pA s dσ � dτ� O

�
p �� V � L ��� C b C���C c C

A X O
�
p � � t

0
e n o L o k p b p r p c pA s � t 	 τ � dτ� O

�
p �� O

�
p � � e nto L o kqp b p r p c pA s t � 1 � 
 (4.28)

Hence, C x � t �H� w
�
t ��C D O

�
p � e � o L o kvu b u w u c u � A � tD O
�
p � e � o L o kvu b u w u c u � A � T � ε ��� t �Ì< 0 � T = 
 (4.29)
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This concludes the proof of the theorem.

Note that from (4.27), we have an estimate of p0 of the theorem, namely,

p0 � min V 4A
7M
� ε�

9MT � � 2A �"� 2 �C b C e � o L o kvu b u w u c u � A � T X (4.30)

Corollary 4.1.1 If the smoothed system has an initial condition different from the
dithered system, the approximation error is not a linear function of p but it is only
affine. It can be proven thatC x � t �H� w

�
t ��C¤D C x0 � w0 C e � o L o kju b u wxu c u � A � T � O

�
p � e � o L o kju b u wxu c u � A � T � ε � � t ��< 0 � T = 


(4.31)

Remark 4.1.1 If the dither signal δ
�
t � is a sawtooth waveform of period p

δ
�
t �B�zy 2A

p
t � A � t ��< 0 � p ��
 (4.32)

Theorem 4.1.1 is still valid but expression (4.30) becomes

p0 � min V A
M
� ε�

9MT � � 2A �"� 2 �C b C e � o L o kju b u wxu c u � A � T X 
 (4.33)

Theorem 4.1.1 can be interpreted as an extension of Theorem 1 in (Mossaheb 1983)
to a class of nonsmooth systems. The result in (Mossaheb 1983) relies on continuity
properties of the solutions of the original and the smoothed systems. This argument
cannot be used here, since a relay feedback system in general do not have solutions
that depend continuously on initial conditions or system parameters. Instead, we pay
particular attention in the proof to the system evolution at and between relay switch-
ings. For pulse-width modulated systems, which is a class of nonsmooth systems that
shows some similarities to the dithered relay feedback system, averaging techniques
are applied in (Lehman and Bass 1996, Gelig and Churilov 1998).

The proof of Theorem 4.1.1 is constructive, so a bound for p0 is also derived. It
shows that p0 should be chosen to be of the order of ε . The bound on p0 depends
on system data and T . It is conservative, since the derivation is done without taking
system data into particular consideration. Tighter bounds can be obtained by exploiting
more of the problem structure, see Section 5.2.1. Heuristic tuning rules for the design
of p0 will be presented in Section 5.3.

4.2 Practical stability
In this section we discuss the stability of the dithered system (4.1a). We assume that
r
�
t � m 0.

We will use Theorem 4.1.1 to obtain conditions for practical stability of the dithered
system. The idea is the following. First we choose the amplitude A of the dither signal,
such that the smoothed system is stable. Then if the period p of the dither signal is
chosen small enough, the output of the dithered system closely follows the output of
the smoothed system. This implies that the output of the dithered system converges
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close to zero. Note that we cannot obtain convergence strictly to zero, since the dither
signal always cause small fluctuations of the output. We use the following definition of
stability.

Definition 4.2.1 (Practical stability) The system in (4.1a) with the triangular dither
and a given amplitude A � 0 is called practically (exponentially) stable if for any ε � 0
there exists α � 0 and β � 1, and p0 � 0 such thatC x � t �hCFD βe 	 αt C x0 C�� ε � � t �Ì< 0 � ∞ �
for any dither period p � � 0 � p0 � .
Theorem 4.2.1 Suppose r

�
t � m 0 and that the smoothed system (4.1b) is exponentially

stable. Then there exists p0 such that for p � � 0 � p0 � the dithered system (4.1a) is
practically stable.

Proof: By hypothesis the system (4.1b) with r
�
t � m 0 is exponentially stable. Hence,

there exists α0 � 0 and β0 � 1 such thatCw � t ��C¤D β0e 	 α0t C x0 CÈ� � t � 0 

We will use this to prove practical stability of (4.1a). We iteratively consider time
intervals of length T and, in order to guarantee a decay rate of 0 
 1, we choose T �� α0 	 1 ln

�
0 
 1 � β0 � . Then, if p0 is sufficiently small (see (4.30)), we haveC x � t �H� w

�
t ��C D ε0

on t �g< 0 � T = . If we consider a new smoothed system satisfying (4.1b) on the time
interval < kT � � k � 1 � T = , k � 0 � 1 � 2 ��
�
�
 , with initial condition w

�
kT � � x

�
kT � , then it

follows from the above arguments thatCw � t ��CED β0e 	 α0 � t 	 kT � C x � kT ��CÈ��� t � kT �
and, by applying Theorem 4.1.1 again,C x � t ��C � C x � t �H� w

�
t �� w

�
t �hC D ε0 �gCw � t ��CD β0e 	 α0 � t 	 kT � C x � kT �hC�� ε0 (4.34)

on t �Ì< kT � � k � 1 � T = . By evaluating (4.34) in t � � k � 1 � T ,C x ��� k � 1 � T ��C¤D 0 
 1 C x � kT �hC�� ε0 
 (4.35)

Hence C x � kT ��CED 0 
 1k
�� x0

�� � ε0
1 � 0 
 1k

1 � 0 
 1 
 (4.36)

Then (4.34) becomesC x � t ��C¤D β0e 	 α0 � t 	 kT � � e 	 αkT C x0 C�� ε0
0 
 9 � � ε0D β0e 	 α0 � t 	 kT � e 	 αkT

�� x0

�� � β0
ε0
0 
 9 � ε0{ |�} ~

ε

� (4.37)
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where α �?� T 	 1 ln0 
 1. Since α0 � α and t � kT , (4.37) becomesC x � t �hC¤D β0e 	 αt
�� x0

�� � ε 
 (4.38)

We have thus shown practical stability with α �I� T 	 1 ln0 
 1 and β � β0.

There are many available results for stability analysis of the smoothed system. We will
here use a criterion by Zames and Falb (1968), which generalizes the Popov criterion.

Corollary 4.2.1 Assume L is Hurwitz and let G
�
jω ���]� c

�
jωI � L � 	 1b. Further let

H
�
jω ��� � ∞	 ∞ h

�
t � e 	 jωtdt, where h : � � � satisfies � ∞	 ∞ C h � t ��C dt D 1. If there exists

ε � 0 such that

Re
�
G
�
jω �� A � � 1 � H

�
jω ���B� ε ��� ω � � 0 � ∞ ��� (4.39)

then there exists p0 such that for p � � 0 � p0 � the dithered system (4.1a) is practically
stable.

Proof: The saturation nonlinearity N
�
z � satisfies the integral quadratic constraint� ∞

0
< z � t �H� AN

�
z
�
t ��� = <N � z � t ���H� � h � N

�
z ��� � t � = dt � 0 � � z � L2 < 0 � ∞ �;�

where � indicates the convolution product. If the criterion (4.39) holds, then it fol-
lows from the main result in (Zames and Falb 1968, Megretski and Rantzer 1997) that
the smoothed system in (4.1b) is ò 2-stable. Moreover, since the vector field of (4.1b)
is Lipschitz continuous it can be shown that ò 2-stability implies exponential stabil-
ity (Megretski and Rantzer 1997, Vidyasagar 1993). By applying Theorem 4.2.1 we
proved the corollary.

Note that the criterion (4.39) corresponds to one of the least conservative conditions
for stability available for systems with a slope restricted nonlinearity. However, it does
not give any immediate information on the performance (e.g., the exponential decay
parameters for the smoothed system α and β ), and it is not convex in the pair

�
A � H � .

The most straightforward use of the theorem is to put H � 0, which then corresponds
to the circle criterion. From the Kalman–Yakubovich–Popov Lemma one can for that
case derive a linear matrix inequality that verifies (4.39) and results in explicit estimates
of the exponential decay parameters. In Section 5.1 we will show how a suitable choice
of H can help to obtain better tuning for A.

4.3 Infinite time horizon
The next result shows that the dithered system can track the averaged system arbitrarily
well over an infinite time horizon provided that the dither signal is chosen appropriately.

Let us call x
�
t � r � x0 � the solution of the problem (4.1a) with initial condition x

�
0 ���

x0 and w
�
t � r� w0 � the solution of the problem (4.1b) with initial condition w

�
0 ��� w0.

We want to evaluate the approximation error C x � t � r� x0 ��� w
�
t � r� x0 �hC , � t � 0 for any

Lipschitz continuous reference signal r
�
t � . We will assume the dither amplitude is

tuned such that the smoothed system is incrementally exponentially stable.

Definition 4.3.1 The system (4.1b) is incrementally exponentially stable if there exists
β � 1 and α � 0 such that for any given initial conditions w1 and w2, the corresponding
solutions satisfy Cw � t � r� w1 �H� w

�
t � r� w2 �hC¤D βe 	 αt Cw1 � w2 C � t � 0 
 (4.40)
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A simple and often very useful criterion for incremental exponential stability is given
by the next lemma.

Lemma 4.3.1 Assume there exists Q � 0 and α � 0 such that the matrix inequalityV LT Q � QL � 2αQ Qb � cT

bT Q � c � 2A X D 0 (4.41)

holds. Then the smoothed system is incrementally exponentially stable with decay rate
α and gain β ��� λmax

�
Q �t� λmin

�
Q � .

Proof: Let ∆w
�
t ��� w

�
t � r� w1 �!� w

�
t � r� w2 � and ∆u

�
t ��� N

�
cw
�
t � r� w1 �¤� r �!� N

�
cw
�
t � r� w2 �¤�

r � . If we let V
�
t ��� ∆w

�
t � T Q∆w

�
t � and use (4.41) then

d
dt

V
�
t ��D�� 2αV

�
t ��� 2

�
c∆w
�
t �H� A∆u

�
t ��� ∆u

�
t ��DG� 2αV

�
t � (4.42)

because�
c∆w
�
t � � A∆u

�
t ��� ∆u

�
t �H� � cw

�
t � r� w1 �¤� r

�
t �!� � cw

�
t � r� w2 �¤� r

�
t ���!� A∆u

�
t ��� ∆u

�
t ��� 0

due to the slope condition on the saturation nonlinearity. Inequality (4.42) givesC∆w
�
t �hCFD βe 	 αt Cw1 � w2 C

with β given in the lemma.

Theorem 4.3.1 Let ε � 0 and x0 �Ì� n be given. Suppose that the smoothed system
(4.1b) is incrementally exponentially stable and assume r

�
t � is globally Lipschitz with

Lipschitz constant Mr. There exists p0 � 0 such that if p � � 0 � p0 � , then C x � t � x0 ���
w
�
t � x0 ��C¤D ε for all t ��< 0 � ∞ � .

Proof: We will need to consider the dithered and the smoothed system from arbitrary
initial time t0 � 0. Hence, for the proof we consider the dithered systemy ẋ

�
t � � Lx

�
t �� bn

�
cx
�
t �� δ

�
t �� r

�
t ��� � t � t0

x
�
t0 � � x0


 (4.43)

and the smoothed systemy ẇ
�
t � � Lw

�
t �� bN

�
cw
�
t �� r

�
t ��� � t � t0

w
�
t0 � � w0

(4.44)

where N
�
z �¼� sat

�
z � A � . We suppress the variable r

�
t � and denote x

�
t � t0 � x0 � the solution

of (4.43) with initial condition x
�
t0 ��� x0 and w

�
t � t0 � w0 � the solution of (4.44) with

initial condition w
�
t0 ��� w0. We want to evaluate the approximation error C x � t � t0 � x0 � �

w
�
t � t0 � x0 �hC � � t � t0. For this we will make critical use of the incremental exponential

stability assumption which means thatCw � t � t0 � w1 �H� w
�
t � t0 � w2 ��CED βe 	 α � t 	 t0 � Cw1 � w2 C (4.45)

Let us indicate as w0 � t � the solution w
�
t � t0 � x0 � of the problem (4.44). The idea is

to show that for each time interval < kT � � k � 1 � T = � k � 0 � T � 0 the approximation
error C x � t � t0 � x0 ��� w0 � t �hC t ��< kT � � k � 1 � T = is bounded by a function of ordo p0.
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Let us call w̃
�
t � t̄ �B� w

�
t � t̄ � x � t̄ ��� t � t̄ the solution of the smoothed system (4.44)

when the initial condition (at the time instant t0 � t̄) is equal to the value that the
state of dithered system assumes at t � t̄. In other words during each time interval< kT � � k � 1 � T = , w̃

�
t � is the solution of the smoothed system when the initial condition is

equal to x
�
kT � .

By the triangle inequality we haveC x � t � 0 � x0 � � w0 � t �hCFD?C x � t � 0 � x0 � � w̃
�
t ��CÝ�jC w̃ � t ��� w

�
t � 0 � x0 ��C � t ��< 0 � � ∞ � (4.46)

Let us consider the first time interval < 0 � T = . In this case w̃
�
t �¡� w0 � t � since the

initial condition is the same for both the solutions. Hence (4.46) reduces toC x � t � 0 � x0 ��� w0 � t �hCh�]C x � t � 0 � x0 �H� w̃
�
t ��CÈ


We can apply Theorem 4.1.1 and choose a p0 � p0
�
x0 � T � Mr � µξ � (where x0 � T � Mr, and

ε � µξ are the parameters that define p0 in equation (4.30) since M � My
�
x0 � � Mr and

My
�
x0 � is defined in (4.4)) such that the approximation error is bounded by the value

µξ with 0 � µ � 1 and ξ � 0:C x � t � 0 � x0 �H� w0 � t ��C��]C x � t � 0 � x0 �H� w̃
�
t �hCFD µξ � ξ � t �Ì< 0 � T = 
 (4.47)

In particular C x � T � 0 � x0 �H� w0 � T �hC¤D ξ 
 (4.48)

Now let us consider a generic time interval < kT � � k � 1 � T = withC x � kT � 0 � x0 �H� w0 � kT �hC¤D ξ

(note that this inequality holds for k � 1):C x � t � 0 � x0 �H� w0 � t ��C�� C x � t � kT � x � kT ����� w
�
t � kT � w � kT ����CD C x � t � kT � x � kT ����� w̃
�
t � kT ��C�iC w̃ � t � kT �H� w

�
t � kT � w � kT ����C � t ��< kT � � k � 1 � T = 
 (4.49)

For the first term we apply Theorem 4.1.1 on the finite time horizon on the interval< kT � � k � 1 � T = . It shows that there exists p0
�
x
�
kT �;� T � Mr � µξ � , which gives the upper

bound µξ . For the second term we use the incremental exponential stability condition
in (4.45), which impliesC w̃ � t � kT �H� w

�
t � kT � w � kT ����CED βe 	 α � t 	 kT � C x � kT ��� w

�
kT �hCD βe 	 α � t 	 kT � ξ D βξ � t ��< kT � � k � 1 � T = 
 (4.50)

In the time instant t � � k � 1 � T we haveC x ��� k � 1 � T � 0 � x0 �H� w0 ��� k � 1 � T ��C � C x ��� k � 1 � T � kT � x � kT ���H� w
���

k � 1 � T � kT � w � kT ���hCD C x ��� k � 1 � T � kT � x � kT ���H� w̃
���

k � 1 � T � kT �hC�iC w̃ ��� k � 1 � T � kT �H� w
���

k � 1 � T � kT � w � kT ����CD µξ � βe 	 αT ξ 
 (4.51)

If we choose a

T � 1
α

ln
β�

1 � µ � (4.52)
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then the inequality (4.51) can be writtenC x ��� k � 1 � T � 0 � x0 ��� w0 ��� k � 1 � T ��CFD µξ � � 1 � µ � ξ � ξ 
 (4.53)

We have shown that there exists T � 0 and p0
�
x
�
kT �;� T � Mr � µξ � such that ifC x � kT � 0 � x0 �H� w0 � kT �hC¤D ξ

, then the approximation error is bounded from above by the value ξ
�
µ � β � on < kT � � k �

1 � T = and C x ��� k � 1 � T � 0 � x0 ��� w0 ��� k � 1 � T ��C D ξ . The infinite horizon theorem now
follows by continuing this process inductively. Indeed, the incremental exponential
stability assumption can be used to show that� w � ∞ � sup

t �[� 0 @∞ � Cw � t � 0 � x0 ��C¤� ∞ 

Hence, we can use the bound p0 � p0

� � w � ∞ � ξ � T � Mr � ε � in each inductive step.

Remark 4.3.1 If we introduce κ � � � L ��� u b u w u c uA � and use T � 1
α ln β

1 	 µ , by using
formula (4.27) and (4.29) we obtain the approximation error

ε � � µ � β � ξ � V 1 � β
µ X V 4 
 5M

A
1
α

ln
β

1 � µ
� 2 X C b C eκ 1

α ln β
1 � µ p0� V 1 � β

µ X V 4 
 5M
A

1
α

ln
β

1 � µ
� 2 X C b C V β

1 � µ X κ
α

p0 
 (4.54)

where M � My
� � w � ∞ � µξ �b� Mr, where My

� � � is defined in (4.4).
The approximation error is independent from the length of the time interval and

depends only on the free parameter µ that can be chosen such that the expression
(4.54) is minimized.

The constructive proof of Theorem 4.3.1 provides also bound on the dither period
p0. This bound is shown to be independent from the length of the time interval and
depends only on a free parameter and on the desired approximation error ε (see Re-
mark 4.3.1 in the proof of Theorem 4.3.1). It turns out, however, that this p0 bound
in general is conservative. The problem is that the bound was derived using only a
minimum information about the structure of the linear part of the system. We will in
the next chapter improve this bound for the case when the smoothed system is incre-
mentally stable.

4.4 Periodic solutions in dithered RFSs
The dithered system will in many cases exhibit a periodic solution. In Chapter 3 we saw
some examples where the solution of the dithered system converges to an oscillation
with a period equal to the period p of the dither signal, while the smoothed system
is asymptotically stable. The existence and stability of periodic solutions in dithered
systems are analysed in this section. Particularly, we are interested in solutions with
period equal to p. The results are useful in the tuning of dither signals discussed in
previous section, because given estimates on the dither period p and amplitude A from
the tuning algorithm, we can use the results below to prove that the dithered system
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will have a (locally) stable oscillation. The results in this section lead to an analytical
expression for the ripple in the output of the dithered system. This expression can
improve the heuristic tuning algorithm introduced in the previous section.

The results presented next cover both symmetric and asymmetric oscillations and
they hold for any (piecewise smooth) periodic dither signal. The mathematical tools
used in this section for the analysis of periodic solutions are based on Poincaré maps.
For similar results and derivations, but for relay feedback systems with no dither (δ m0), see (Åström 1995, Johansson et al. 1999, di Bernardo et al. 2000, Varigonda and
Georgiou 2001, Johansson et al. 2002).

4.4.1 Symmetric periodic solutions
First we consider the case of symmetric periodic solutions. Consider the dithered relay
feedback system (4.1a), with zero reference r

�
t � m 0 and a symmetric dither signal so

that δ
�
t � p � 2 ��� � δ

�
t � , � t. Let us assume that this system has a symmetric unimodal

periodic solution of period p, which means that

x
�
t � p � 2 ���?� x

�
t ����� t � 0 �

and that the solution switches only twice per period. To analyse this oscillation, it is no
restriction to consider the system

ẋ
�
t ��� Lx

�
t �� bsgn

�
z
�
t ���;� z

�
t �B� cx

�
t �b� R � δ

�
t � α ���

with initial conditions at t � 0 such that z
�
0 ��� 0 and ż

�
0 �>� 0. The dither signal δ has

been translated α time units. We assume that δ
�
t � is differentiable at t �?� α . Then,

ẋ
�
t ��� Lx

�
t ��� b � 0 D t D p � 2 (4.55a)

ẋ
�
t ��� Lx

�
t �b� b � p � 2 � t D p 
 (4.55b)

It follows that

x
�
p � 2 ��� eLp � 2x

�
0 �H� L 	 1 � eLp � 2 � I � b � (4.56)

where we assume that L is invertible (if L is not invertible, one can still derive x
�
p � 2 �

but for simplicity we do not consider that case). Since the periodic solution is assumed
to be symmetric, we have

x
�
p � 2 ���?� x

�
0 ��� eLp � 2x

�
0 �H� L 	 1 � eLp � 2 � I � b � (4.57)

and thus

x
�
0 ��� � eLp � 2 � I � 	 1L 	 1 � eLp � 2 � I � b 
 (4.58)

It is now possible to derive the following existence result, cf., (Åström 1995, Varigonda
and Georgiou 2001).

Proposition 4.4.1 The dithered system has a symmetric unimodal periodic solution
with period p if and only if there exists α such that

c
�
eLp � 2 � I � 	 1L 	 1 � eLp � 2 � I � b � δ

� � α ��� 0

and

ceLt � eLp � 2 � I � 	 1L 	 1 � eLp � 2 � I � b � cL 	 1 � eLt � I � b � δ
�
t � α �>� 0 � 0 � t � p

2
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Next we investigate the stability of the periodic solution. Introduce the maps

g
�
t � x �B� eLt x � L 	 1 � eLt � I � b � µ

�
t � x ��� cg

�
t � x �b� δ

�
t � α �;


For an initial point x
�
0 ��� x0, denote the first switching instant for the dithered sys-

tem by t � � t � � x0 � . As pointed out above, we assume that δ
�
t � α � does not have a

discontinuity in its time derivative at the switching instants. Then,

x
�
t � �B� g

�
t � � x0 ��� eLt � x0 � L 	 1 � eLt � � I � b � : N

�
t � � x0 � M

�
t � ��� (4.59)

where notations N and M are introduced for convenience. The switching constraint is

µ
�
t � � x0 ��� 0 
 (4.60)

Since the switching instant t ��� t � � x0 � is a function of the initial condition x0, we
can evaluate the partial derivative of (4.59) with respect to x0 by using the theorem of
implicit functions, and thus derive the following Jacobian evaluated at

�
t � x ��� � t �h� x0 � :

J � ∂g
∂x
� ∂g

∂ t
V ∂ µ

∂ t X 	 1 ∂ µ
∂x

(4.61)

where

∂g
∂x
� N
�
t � � (4.62)

∂g
∂ t
� ∂N

�
t �;�

∂ t
x0 � ∂M

�
t ���

∂ t
(4.63)

∂ µ
∂ t
� c

∂g
∂ t
� ∂δ

∂ t
(4.64)

∂ µ
∂x
� c

∂g
∂x
� cN

�
t � ��
 (4.65)

By evaluating the equations above, we obtain the following stability result.

Proposition 4.4.2 A symmetric unimodal periodic solution defined by Proposition 4.4.1
is stable if all eigenvalues of the Jacobian

J � V I � wc
cw � ∂δ � ∂ t X eLt � � w � � I � eLt � � 	 1

eLt � � � 2b �
are in the open unit disc. It is unstable if at least one eigenvalue of J is outside.

By applying Propositions 4.4.1 and 4.4.2, we can thus prove the existence and the
stability of a periodic solution for the dithered system. This information can be used to
guide the dither tuning introduced in previous section, since for appropriate application
of the dither the feedback system should exhibit a (fast) oscillation with period p. If
such oscillation does not exist, the period of the dither could be modified.

4.4.2 Asymmetric periodic solutions and bias
Dither may give rise also to asymmetric periodic solutions. By following a procedure
similar to that presented above, it is easy to derive sufficient and necessary conditions
for the existence of asymmetric periodic solutions.
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Consider the dithered relay feedback system (4.1a) again, but now with (possibly
non-zero) constant reference r

�
t � � R and (possibly) asymmetric dither signal. Let

us assume that this system has a asymmetric unimodal periodic solution of period p.
Then,

ẋ
�
t ��� Lx

�
t �H� b � 0 D t D T	 (4.66a)

ẋ
�
t ��� Lx

�
t �� b � T	 � t D T	 � Tk�� (4.66b)

where T	 c� Tk are the lengths of the two asymmetric parts of the periodic solution, so
that T	 � Tk � p. Define ξ � x

�
0 � as the initial condition and η � x

�
T 	 � the value of

the state at the switching instant time T	 . If L is invertible, then

η � eLT� ξ � L 	 1 � eLT� � I � b � (4.67)

and since ξ � x
�
p � 2 � ,

ξ � eLT� η � L 	 1 � eLT� � I � b 
 (4.68)

Hereby, �
I � eLp � ξ � L 	 1 � � eLp � 2eLT� � I � b (4.69a)�
I � eLp � η � L 	 1 � eLp � 2eLT� � I � b 
 (4.69b)

Similar to Proposition 4.4.1, these equations lead to the following result.

Proposition 4.4.3 The dithered system has an asymmetric unimodal periodic solution
with period p if and only if there exist α and a positive T	 c� Tk , with p � T	 � Tk ,
such that

c
�
I � eLp � 	 1L 	 1 � � eLp � 2eLT� � I � b � δ

� � α �b� R � 0

c
�
I � eLp � 	 1L 	 1 � � eLT� � eLT�H� b � 1

2
δ
�
T	 � α �� R � 0 �

and

ceLtξ � cL 	 1 � eLt � I � b � δ
�
t � α �� R � 0 � 0 � t � T	

ceLtη � cL 	 1 � eLt � I � b � δ
�
t � T	 � α �� R � 0 � 0 � t � Tk¡�

where ξ and η are defined above.

Compared to the symmetric case we have an extra parameter to determine when estab-
lishing the existence of an asymmetric periodic solution.

It is straightforward to derive the stability condition corresponding to Proposi-
tion 4.4.2 also for asymmetric periodic solutions.

Note that the existence of a unimodal asymmetric periodic solution implies that the
average of some of the state variables must be nonzero. Such a dithered system, could
present a bias in the output while the output of corresponding smoothed system may
tend to zero. A rigorous analysis of the bias phenomena is out of the scope of this
thesis, but will be investigated in a future work.
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Figure 4.2: Phase plane portrait of the simulation of Figure 3.11. The dash-dotted
line is the switching plane cx � A � R � 0 and the dotted line is the switching plane
cx � A � R � 0. In the diagram the equilibrium points x̄ �G� L 	 1b are also plotted.

4.5 Zero-slope dither signals
One of the key point in the proof of the average theorem is the assumption on shape of
the dither signal. The analysis used in the proof cannot be directly extended to dither
signals that have zero time derivative in a time interval of nonzero measure. In this
Section we will discuss and analyse simulations presented in Chapter 3 related to the
relay feedback system dithered with square wave signals.

A phase plane picture of the space evolution of the dithered system can help to
justify the shape of the limit cycle of the dithered system in this case. In Figure 4.2
we plotted the switching lines cx � A � R � 0 and cx � A � R � 0, for R � A. In
fact the square wave dither assumes only the values � A and � A so that we have only
two switching hyperplanes. When the trajectory is in the region between these two
switching lines, dither affects the system. When the trajectory is below the line cx �
A � R we have a smooth behaviour: no switching occurs until the trajectory intersects
this line again. In order to analyse this behaviour, let us consider Figure 4.3 in which
we focus our attention on four points of the trajectory:

1 Starting point of our analysis: the trajectory tends towards the upper equilibrium
point. In fact δ

�
t ���I� A and the upper switching line is active. Since the tra-

jectory is below this line (cx � δ � r � 0), the output of the relay is � 1 and the
equilibrium point is x̄ �?� L 	 1b �ZY 0 1 [ T .

2 The square wave dither switches from � A to � A. The trajectory is now above
the active switching line so the output of the relay is � 1 and the trajectory tends
towards the equilibrium point Y 0 � 1 [ T (see Figure 4.2).

3 The square wave dither switches again from � A to � A and we have the same
behaviour as of the point 1.
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Figure 4.3: Zoom of Figure 4.2. The dotted line is the switching plane cx � A � R � 0.

4 Now the trajectory passes through the switching line cx � A � R � 0 although the
active switching line is the upper one (cx � A � R � 0). When the dither switches
to the value � A so that the active switching line is cx � A � R � 0, the trajectory
is now below this line and the output of the relay doesn’t change even when the
dither switches again. We have a smooth behaviour until the trajectory passes
again through the plane cx � A � R � 0. This behaviour (switching-smooth) still
remains even if we increase the dither frequency.

This simulation, together with the example of trapezoidal dither (see Chapter 3),
shows the validity of the conjecture derived from the geometrical approach of the av-
erage theorem proof. In order to understand this key point it is necessary to give a look
at the proof of Theorem 4.1.1: when we have a dither signal with some time interval
of zero slope, it can be shown that the time interval during which the argument of the
integral in (4.8) can be non-zero is not bounded by p2 (so as required for the proof) but
only by p.

4.6 Averaging for smooth-switching trajectories
In the previous section we have just pointed out that the geometrical approach could be
used in deriving some conjectures about the dither effectiveness in smoothing the relay
nonlinearity. We discussed the example of the square wave dither and we saw how this
class of signals can induce a smooth-switching behaviour in the dithered system.

In this section we will give a deeper look at the cause of such a behaviour. First of
all we generalize the case of square wave dithered RFS.

Let us consider a phase plane approach. We can divide the phase plane into three
regions: two regions in which the dither has no effects since the argument of the signum
function is always greater than or less than the dither signal (cx � R � � A or cx � R � A)
and a third region (included between the two hyperplanes S1 and S2) in which the dither
affects the system behaviour:
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• Region X1 ��� x : cx � R � A � 0 � . In this region u � � 1 and the dithered system
coincides with the smoothed system: ẋ � Lx � b. The equilibrium point is P1 :
x̄ � L 	 1b (by assuming L invertible).

• Region X2 ��� x : cx � R � A � 0 � . In this region u �i� 1 and the dithered system
coincides with the smoothed system: ẋ � Lx � b. The equilibrium point is P2 :
x̄ �?� L 	 1b (by assuming L invertible).

• Region X0 �\� x : C cx � R C"� A � . In this region the dithered system has an in-
put that switches periodically between � 1 and � 1 (note that while x � X0 the
switches are periodic because only depend on the dither signal and are indepen-
dent from the state x). The smoothed system has an input equal to zero: ẇ � Lw.
The equilibrium point of the smoothed system is the origin (L is assumed to be
invertible).

In what follows we will consider the different situations due to the position of the
equilibrium points P0 with respect to the hyperplane S2. A similar analysis can be
carried out by considering P0 close to S1.

Case P2 � X0, P0 � S2, P1 � X2

By looking at Figure 4.2 it is clear that the smooth-switching behaviour is due to the fact
that the state trajectory lies in the regions X0 and X2. Starting from a point x0 � X2,
since the equilibrium point (asymptotically stable since L is Hurwitz) P2 �� X2, the
trajectory goes again in the X0 region. In this region the dithered system “follows” the
smoothed system behaviour: w asymptotically tends to the origin P0 � S2 and, in the
case under investigation, the smoothed state does not pass through the S2 hyperplane.
However, due to the nonzero ripple, the “dithered” state x crosses S2 and passes into
the region X2 and here the cycle repeats.

Case P2 � X0, P0 � X0, P1 � X2

When P0 � S2 only an infinite dither frequency can avoid that the state x crosses S2;
therefore for finite dither frequency the smoothed state w tends to the origin P0 and
the dithered state x escapes from the “entrapment” region X0. If the origin is inside
the region X0, a sufficiently high dither frequency can avoid the presence of a smooth-
switching trajectory (it can be shown that in the X0 region the averaging theorem is
still valid).

In order to validate our conjecture, we can change the position of the origin P0 with
respect to the switching line S2: if we choose A � 1 and R � 0 
 99 the origin P0 is inside
the region X0. In Figure 4.4 we have the time diagram of the outputs (dithered system
and smoothed system) and in Figure 4.5 we have the phase plane diagram. The smooth-
switching behaviour is still present since the ripple is sufficiently high to escape from
the X0 region.

If we increase the dither frequency, the ripple decreases and in the case p � 1 � 50
the dithered state x cannot escape from the region X0 so smoothed system and dithered
system have the same behaviour (see Figure 4.6 and Figure 4.7).

Case P2 � X0, P0 � X2, P1 � X2

This is the straightforward case in order to obtain a smooth-switching behaviour. In
fact the averaged system isn’t stable and its trajectory oscillates between X0 and X2
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Figure 4.4: Outputs of the dithered relay feedback system (solid) and the smoothed sys-
tem (dashed) with dither period p � 1 � 5, dither amplitude A � 1 and external reference
r
�
t ��� R � 0 
 99. The dither signal is a squarewave.

region. When the state is in X1 or X2, the trajectory tends toward the equilibrium point
and necessarily passes into the region X0. So the trajectory of the dithered system has
a smoothed behaviour in this phase. When the state of the dithered system is in X0 we
have a switching behaviour but again the trajectory passes into the region X2 since the
equilibrium point of the averaged system is in X2 and the dithered trajectory follows
the averaged one. Then the cycle restarts.

4.6.1 Triangular dither
Inspired by the previous analysis it could be interesting to investigate the possibil-
ity for obtaining a smooth-switching behaviour also in the case of a triangular dither
waveform.

Let us define the regions X0, X1 and X2 and the equilibrium points P1 and P2 as
above. In order to avoid the convergence of the trajectory towards an equilibrium point,
it is necessary that P1 �� X1 and P2 �� X2. These conditions can be satisfied by suitably
choosing the parameters A and R.

In the case of a square wave dither we have shown that if P0 � S2 it is possible to
have smooth-switching trajectories also with high dither frequency. Instead, in order
to have smooth-switching trajectory with triangular dither it is not sufficient to put the
equilibrium point P0 (equilibrium point of the smoothed system in the region X0) close
to S2 (or S1). In fact, in this case the smoothed system (saturation as equivalent non-
linearity) has a vector field non discontinuous on S2. The continuity of the vector field
does not allow to have a cyclic behaviour of the dithered system because the equilib-
rium point P2 � P0 when P0 tends towards S2. In fact P0 is w̄ � � � L � bc � A � 	 1bR � A,
a continuous (and linear) function of R and P2 is � L 	 1b. It can be shown (see Exam-
ple 2.2.5) that when P0 � S2 (i.e. cw̄ � R � A � 0), P0 m P2. In the case of the square
dither, indeed, both P0 and P2 didn’t depend on R and they were always different points.

Inspired by the averaging theorem we can conjecture that a smooth-switching tra-
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Figure 4.5: Phase plane portrait of the simulation of Figure 4.4. The dash-dotted line is
the switching plane cx � A � R � 0 and the dotted line is the switching plane cx � A �
R � 0. In the diagram the equilibrium points x̄ ��� L 	 1b are also plotted.

jectory in a relay feedback system with triangular dither may exist if the smoothed
system has a limit cycle that crosses the switching line S2. This intuition derives from
the averaging theorem although the theorem has not been proved (for infinite time hori-
zon) in the case of an unstable smoothed system (the case in which it presents a limit
cycle). Figures 4.8, 4.9 and 4.10 confirm our intuition. In what follows we show in
which cases the averaging theorem can be applied also when the smoothed system has
a limit cycle.

Definition 4.6.1 (Practical stability) The dithered system (4.1a) with the triangular
dither and a given amplitude A � 0 has a practically (exponentially) stable limit cycle
γ if for any ε � 0 there exists α � 0 and β � 1, and p0 � 0 such that

d
�
x
�
t �;� γ ��D βe 	 αt d

�
x0 � γ �� ε � � t ��< 0 � ∞ �

for any dither period p � � 0 � p0 � , where d
�
x � γ ��� infy � γ C x � y C .

Theorem 4.6.1 Suppose r
�
t �¡� R and that the smoothed system (4.2b) has an expo-

nentially stable limit cycle. Then there exists p0 such that for p � � 0 � p0 � the dithered
system (4.1a) has a practically stable limit cycle.

Proof: By hypothesis the system (3.25) with r
�
t �¼� R has a limit cycle γ exponentially

stable. Hence, there exists α0 � 0 and β0 � 1 such that

d
�
w
�
t ��� γ ��D β0e 	 α0t d

�
w0 � γ �;� � t � 0 


We iteratively consider time intervals of length T and, in order to guarantee a decay
rate of 0 
 1, we choose T �G� α0 	 1 ln

�
0 
 1 � β0 � . Then, if p0 is sufficiently small, we haveC x � t �H� w

�
t ��C D ε0
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Figure 4.6: Outputs of the dithered relay feedback system (solid) and the smoothed
system (dashed) with dither period p � 1 � 50, dither amplitude A � 1 and external
reference r

�
t ��� R � 0 
 99. The dither signal is a squarewave.

on t �g< 0 � T = . If we consider a new smoothed system satisfying (3.25) on the time
interval < kT � � k � 1 � T = , k � 0 � 1 � 2 ��
�
�
 , with initial condition w

�
kT � � x

�
kT � , then it

follows from the above arguments that

d
�
w
�
t ��� γ ��D β0e 	 α0 � t 	 kT � d � x � kT �;� γ �;� � t � kT �

and, by applying the averaging theorem on finite time horizon again,

d
�
x � γ ��D C x � t �H� w

�
t ��C�� d

�
w � γ ��D ε0 � d

�
w
�
t �;� γ �D β0e 	 α0 � t 	 kT � d � x � kT �;� γ �� ε0 (4.70)

on t �Ì< kT � � k � 1 � T = . By evaluating (4.70) in t � � k � 1 � T ,

d
�
x
���

k � 1 � T �;� γ ��D 0 
 1d
�
x
�
kT �;� γ �� ε0 
 (4.71)

Hence

d
�
x
�
kT ��� γ ��D 0 
 1k d

�
x0 � γ �b� ε0

1 � 0 
 1k

1 � 0 
 1 
 (4.72)

Then (4.70) becomes

d
�
x
�
t �;� γ ��D β0e 	 α0 � t 	 kT � � e 	 αkT d

�
x0 � γ �� ε0

0 
 9 � � ε0D β0e 	 α0 � t 	 kT � e 	 αkT d
�
x0 � γ �� β0

ε0
0 
 9 � ε0{ |�} ~

ε

� (4.73)

where α �?� T 	 1 ln0 
 1. Since α0 � α and t � kT , (4.73) becomes

d
�
x
�
t �;� γ ��D β0e 	 αt d

�
x0 � γ �� ε 
 (4.74)
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We have thus shown practical stability with α �I� T 	 1 ln0 
 1 and β � β0.

Figure 4.11 shows the validity of the theorem even if w0 c� x0. In Figure 4.12 we
can see what happens in the time domain.
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Figure 4.7: Phase plane portrait of the simulation of Figure 4.6. The dash-dotted line is
the switching plane cx � A � R � 0 and the dotted line is the switching plane cx � A �
R � 0. In the diagram the equilibrium points x̄ ��� L 	 1b are also plotted.
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Figure 4.8: Outputs of the dithered relay feedback system (solid) and the smoothed
system (dashed) with dither period p � 1 � 10, dither amplitude A � 0 
 45 and external
reference r

�
t ��� R � 0 
 45. The dither signal is triangular.
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Figure 4.9: Zoom of Figure 4.8.
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Figure 4.10: Phase plane of the simulation corresponding to Figure 4.8.
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Figure 4.11: Phase plane of the simulation corresponding to Figure 4.8 with different
initial conditions.
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Figure 4.12: Simulation corresponding to Figure 4.8 with different initial conditions.



Chapter 5

Design

In this chapter we use Theorems 4.1.1 and 4.2.1 to tune the dither signal. The purpose
can for example be to stabilize an oscillating system. We also use Corollary 5.2.1 to
obtain an LMI based design methodology of the dither parameters. This results in
an exponentially stable system with a state vector that can track the state vector of the
smoothed system with arbitrary precision. We finally present a heuristic method, which
can give less conservative designs. The design methods are illustrated on the example
in Section 3.4. We consider the case with triangular dither. Analogous tuning rules can
be derived for the case of, for example, sawtooth dither.

5.1 A first tuning algorithm
The dither design choice will necessarily be a compromise between conflicting conse-
quences of the dither amplitude A and period p on the control performance. Based on
our theoretical results we obtain the following algorithm for tuning the parameters of
the dither signal.

Step 1 Choose A based on (4.39) in Corollary 4.2.1, so that the smoothed system
in (4.1b) is exponentially stable.

Step 2 Estimate α0 � β0 and let T �I� ln
�
0 
 1 � β0 ��� α0, where α0 � β0 are the exponential

stability parameters for the smoothed system. Choose p0 based on T and the
smoothed dynamics.

A few comments are in place. In Step 1 we need to choose the amplitude A of the dither
signal large enough to allow the smoothed system to be stable and to have fast enough
exponential decay rate. At the same time we want to keep A as small as possible in
order to avoid injecting a large signal in the control loop.

In Step 2 the estimates of α0 and β0 can be derived based on the Kalman–Yakubovich–
Popov Lemma, as discussed in Section 4.2. Then we can compute time interval length
T , which is an auxiliary variable in the proof of Theorem 4.2.1. The parameter T gives
a bound on the period of the dither signal through (4.30) in the proof of Theorem 4.1.1.
Better bounds can be derived if we use the structure of the saturation nonlinearity and
that the smoothed dynamics is chosen to be exponentially stable. The bound derived in
Theorem 5.2.1 is taking several of these structural aspects into account.



5.2 A second tuning algorithm 55

5.2 A second tuning algorithm
We first improve the bound on p0 obtained in the proof of Theorem 4.1.1. A much
tighter bound can be obtained when the smoothed system is incrementally stable.

Theorem 5.2.1 Assume r
�
t � is globally Lipschitz with Lipschitz constant Mr and sup-

pose there exists P � PT � 0 and γ � 0 such that��
LT P � PL Pb � cT 0
bT P � c � 2A c

0 cT � γI

�� D 0 
 (5.1)

Then the bound p0 on the dither period in Theorem 4.1.1 can be chosen to be

p0 � min V 4A
7M
� Γ 	 1ε X (5.2)

where

Γ � c3T � 2c1 �Q� γ � λmin
�
P �K� 1

3c3
� Y c3T � 2c1 [ 3 � 8c3

1 � (5.3)

and

c1 � sup
t ��� 0 @ T � C eLt b C � c2 � sup

t ��� 0 @ T � C LeLt b CÈ� c3 � 1
2
V 9M

A
c1 � 3c2 X 


and M � supt ��� 0 @ T � <�C cLeLt x0 C�� � t
0 C cLeLsb C ds �iC cb C = � Mr.

Proof: The differential form of (4.25) is

ẋ
�
t �H� ẇ

�
t ��� L

�
x
�
t ��� w

�
t ���� b <N � cx

�
t �� r

�
t ���H� N

�
cw
�
t �b� r

�
t ��� = � bv

�
t �;�

where v
�
t ��� n

�
cx
�
t �� r

�
t �� δ

�
t ����� N

�
cx
�
t �b� r

�
t ��� . This system can equivalently be

written

x
�
t ��� w

�
t ��� � t

0
eL � t 	 s � b � N � cx

�
s �� r

�
s ���H� N

�
cw
�
s �b� r

�
s ����� ds � e

�
t �;� (5.4)

where e
�
t ��� � t

0 eL � t 	 s � bv
�
s � ds.

Lemma 5.2.1 We haveC e � t �hC¤D V V 9Mt
2A
� 2 X c1 � 3t

2
c2 X p � � c3t � 2c1 � p

for all t ��< 0 � T = . Moreover,

� t

0
C e � s ��C 2ds D 1

3c3
�¼Y c3t � 2c1 [ 3 � 8c3

1 � p2

where

c1 � sup
t ��� 0 @ T � C eLt b C � c2 � sup

t ��� 0 @ T � C LeLt b CÈ� c3 � 1
2
V 9M

A
c1 � 3c2 X 
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Proof: This will be derived in a similar fashion as the proof of Theorem 4.1.1. Let
m ��� T � p ! , then e

�
t ��� e1

�
t �� e2

�
t �� e3

�
t �

e1
�
t ��� � t

mp
eL � t 	 s � b < n � cx

�
s �b� r

�
s �� δ

�
s ���H� N

�
cx
�
s �� r

�
s ��� = ds

e2
�
t ��� m 	 1

∑
k " 0 � � k k 1 � p

kp
< eL � t 	 s � bn

�
cx
�
s �� r

�
s �b� δ

�
s ���� eL � t 	 kp � bn

�
cx
�
kp �b� r

�
kp �� δ

�
s ��� = ds

e3
�
t ��� m 	 1

∑
k " 0

eL � t 	 kp � bN
�
cx
�
kp �� r

�
kp ��� p � � mp

0
eL � t 	 s � bN

�
cx
�
s �� r

�
s ��� ds

For the first term we haveC e1
�
t ��CED 2c1 p � where c1 � sup

t ��� 0 @ T � C eLt b C
Each term of e2 can be split into two terms: e2 � ∑m 	 1

k " 0 � e2ka
� e2kb � ,

e2ka
� � � k k 1 � p

kp

�
eL � t 	 s � � eL � t 	 kp � � bn

�
cx
�
s �� r

�
s �b� δ

�
s ��� ds

e2kb
� � � k k 1 � p

kp
eL � t 	 kp � b < n � cx

�
s �� r

�
s �� δ

�
s ���H� n

�
cx
�
kp �� r

�
kp �b� δ

�
s ��� = ds

For the first we get the boundC e2ka
CFD c2 p2 � where c2 � sup

t ��� 0 @ T � C LeLt b C
and for the second we get C e2kb

C¤D c14
M
A

p2 � p D p̄

which follows from (4.20) in the proof of Theorem 4.1.1. If we put these bounds
together and sum we get C e2

�
t �hC¤D � c2 � c14

M
A
� t p 


for all t � < 0 � T = . Finally, since the Lipschitz constant of H
�
s ��� eL � t 	 s � bN

�
cx
�
s � � r

�
s ���

can be bounded as

Lip <H = D c2 � c1
M
A

A similar argument as in equations (4.22)-(4.24) givesC e3
�
t �hC¤D � c2 � c1

M
A
� t
2

p

for all t ��< 0 � T = . If we put everything together, we getC e � t ��CFD V V 9Mt
2A
� 2 X c1 � 3t

2
c2 X p
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for all t ��< 0 � T = .
A state space realization of (5.4) is

ż
�
t ��� Lz

�
t �� bu

�
t ��� z

�
0 ��� x

�
0 �H� w

�
0 ��� 0

u
�
t ��� N

�
cx
�
t �b� r

�
t ����� N

�
cw
�
t �� r

�
t ���

x
�
t �H� w

�
t ��� z

�
t �� e

�
t �

We will use the slope condition on the saturation nonlinearity N, which gives the rela-
tion �

c
�
z � e ��� Au � u � 0 (5.5)

Now, let us multiply the linear matrix inequality with Y zT u eT [ on the left and its
transpose on the right. This gives

d
dt

zT Pz � 2
�
c
�
z � e �H� Au � u � γeTe D 0

If we integrate this inequality and use that the second term is positive due to (5.5) then
we get

z
�
t � T Pz

�
t ��D z

�
0 � T Pz

�
0 �� γ � t

0
C e � s �hC 2ds

Hence, using z
�
0 ��� 0,C z � t ��CED � λmax

�
P �t� λmin

�
P �hC z � 0 �hC��Q� γ � λmin

�
P � ñ � t

0
C e � s ��C 2dsD�� γ � λmin

�
P � ñ � T

0
C e � s ��C 2ds

D�� γ � λmin
�
P ��� 1

3c3
�¼Y c3T � 2c1 [ 3 � 8c3

1 � � p
We see that C x � t �H� w

�
t �hCFD ε on t ��< 0 � T = ifC z � t �hC��gC e � t ��C D ε �

which is the case if

p D Γ 	 1ε

where

Γ � c3T � 2c1 �Q� γ � λmin
�
P � � 1

3c3
�¼Y c3T � 2c1 [ 3 � 8c3

1 �
the bound on p in the statement of the theorem holds.

By combining Theorem 4.3.1 and the previous theorem we obtain much better bounds
for the dither frequency also in the case of infinite time horizon. We state this as a corol-
lary. Here we assume that we have an estimate on the norm � w � ∞ � supt ��� 0 @∞ � Cw � t ��C .
Such a bound is easy to obtain for a given reference signal. If we have a class of ref-
erence signals then we can obtain a bound by exploiting the incremental exponential
stability of the smoothed system.
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Corollary 5.2.1 Let ε � 0 and x0 � � n be given. Suppose that the smoothed system
(4.1b) is incrementally exponentially stable with gain β and decay rate α . Assume
further that r

�
t � is globally Lipschitz with Lipschitz constant Mr and that the bound on

the smoothed system state is � w � ∞. Then C x � t � x0 � � w
�
t � x0 ��C D ε for all t �Ì< 0 � ∞ � if the

dither period is chosen in p � � 0 � p0 � , where

p0 � min

����
4A
7M
� ε�

1 � β
µ
� Γ � P� α � β � µ ��� w � ∞ �

�K���
(5.6)

Here µ � � 0 � 1 � ,
Γ
�
P� α � β � µ ��� w � ∞ ��� c3

α
ln
� β
1 � µ

�b� 2c1

� ñ γ
λmin
�
P � ������ 1

3c3 � V c3
α

ln
� β
1 � µ

�� 2c1 X 3 � 8c3
1 � � (5.7)

where P � 0 solves the LMI in (5.1) and

c1 � sup
t ��� 0 @ T � � C eLt b C � c2 � sup

t ��� 0 @ T � � C LeLt b C � c3 � 1
2
V 9M

A
c1 � 3c2 X 


where M �IC cL C � � w � ∞ � ε ��gC cb C�� Mr, and T ��� 1
α ln β

1 	 µ .

Proof: The proof follows by using Theorem 5.2.1 in an analogous reasoning as in
Remark 4.3.1 in the proof of Theorem 4.3.1.

The parameter M is a bound on the Lipschitz constant of cx
�
t �b� r

�
t � . The bounds

suggested in Theorem 5.2.1 and Corollary 5.2.1 are generally conservative. The more
knowledge we have about the trajectory of the smoothed system and the reference
signal, the better bound we are able to obtain.

We will here use Corollary 5.2.1 to derive a tuning algorithm that gives an expo-
nentially stable dither system, which tracks the state of the smoothed system over an
infinite time horizon with any desired accuracy. We assume that we have derived a
bound � w � ∞ � supt ��� 0 @∞ � Cw � t � r � x0 �hC . This can often be done by solving an LMI. For
given tracking accuracy, ε , Corollary 5.2.1 gives the bound (5.6) with (5.7). Here P � 0
and γ � 0 solve the LMI (5.1) and the parameters α and β can be obtained from the
LMI (4.41). We would like to optimize the free parameters such that p0 becomes as
small as possible. This is hard since the dependence on the free parameters is noncon-
vex. One way to obtain a reasonable solution is to pick some µ � � 0 � 1 � , then a dither
amplitude A and desired exponential decay rate such that the LMI’s (5.1) and (4.41)
are feasible. From (5.6) and (5.1) we see that β and γ � λmin

�
P � should be as small as

possible (which also makes c1 and c2 small). This can done by solving

minβ 2 (5.8a)
s 
 t 
 V LT Q � QL � 2αQ Qb � cT

bT Q � c � 2A X D 0 (5.8b)

Q � λminI

λminβ 2I � Q 
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by bisection on β 2 and

min λ̄ (5.9a)
s 
 t 
 ��

LT P � PL Pb � cT 0
bT P � c � 2A c

0 cT � γI

�� D 0 (5.9b)

λ̄P � γI

γ � 0 

by bisection on λ̄ . From the last optimization problem we obtain γ � λmin

�
P �BD λ̄ . Note

that the constraints of these two optimization problems are LMI’s for fixed β 2 and λ̄ ,
respectively.

We have arrived at the following tuning algorithm:

Step 1 Choose µ � � 0 � 1 � .
Step 2 Choose a desired exponential decay rate α and then select the dither amplitude

A so that the LMI’s (5.8b) and (5.9b) are feasible.

Step 3 Solve the optimization problem (5.8a), which gives Q and β and then prob-
lem (5.9a), which gives P and γ � λmin

�
P � .

Step 4 Compute p0 from (5.6).

5.3 A heuristic tuning algorithm
A practical issue that can be taken into account when tuning the dither period is how
much fluctuations on the output we get due to the dither signal. We derive a heuristic
bound on these fluctuations.

Assume the transients have decayed and signals are small enough, so that we can
consider the linear range of the smoothed nonlinearity. Then the transfer function

Gcl
�
s �B�_V 1 � G

�
s �

A X 	 1 G
�
s �

A
�

where G
�
s � ��� c

�
sI � L � 	 1b, approximately describe the mapping from the dither

signal to the output y �I� cx. Choose ω0 � 0 such thatCGcl
�
jω �hC¤D µ

A
��� ω � ω0 � (5.10)

for some small µ � 0. Then we can expect C y � t �hC"D µ for sufficiently large t, if the
dither period is chosen such that p0 D 2π � ω0. The following heuristic tuning rule
follows:

Step 1 Choose an output bound µ � 0. Choose A based on (4.39) in Theorem 4.2.1.

Step 2 Choose p0 such that p0 D 2π � ω0, where ω0 satisfies (5.10).

We have assumed the dither signal to be approximately sinusoidal while deriving this
bound. Analytical expressions for the stationary periodic oscillation in a dithered relay
system can be derived using the results in Section 4.4. This allow exact computation
of the size of the dither ripple.
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Figure 5.1: Nyquist curve of G
�
s �B� � 1 � s � � s � 1 � 	 2.

5.4 An example
Let us continue discussing the example in Section 3.4. Recall that

G
�
s ���I� c

�
sI � L � 	 1b � 1 � s�

s � 1 � 2 

In all the tuning algorithms the first step is to choose the dither amplitude A. Consider
Theorem 4.2.1 with H

�
s �>� 0, which corresponds to the circle criterion. We see from

the Nyquist curve of G in Figure 5.1 that for A � 0 
 56

ReG
�
jω �� A � 0 � � ω � � 


Hence, the dithered system is practically stable for A � 0 
 56 and p sufficiently small.
By using Theorem 4.2.1 instead with H

�
s �¼� � � s � 1 � 	 1, we can prove practical stabil-

ity for A � 0 
 501. In order to choose the dither period, the first two tuning algorithms
while providing a rigorous bound on p0, still lead to a conservative result (with A � 1
the first algorithm gives p0 � 1 � 108, the second one gives p0 � 1 � 104). A useful guess
value of the dither period can be obtained by using the heuristic tuning algorithm (for
A � 1 and the same approximation error we have p0 � 1 � 3).

We now analyse the effects of the dither parameters A and p on the responses of
the dithered and smoothed systems through some simulations. Figure 5.2 shows a
simulation for A � 0 
 502 and p � 1 � 10. The system is close to the stability boundary.
Recall that the smoothed system is unstable for A � 0 
 5.

Figure 5.3 shows the effect of the dither amplitude on the stability of the smoothed
system: it is possible to obtain a fast convergence by increasing A. Figure 5.4 shows
finally the effect of the dither frequency on the approximation between the dithered
system and the smoothed system: it is possible to obtain a response very close to the
output of the smoothed system by decreasing the dither period. Compare the figure in
Section 3.4.
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Figure 5.2: Outputs of the dithered (solid) and smoothed (dotted) systems close to the
stability boundary predicted by Theorem 4.2.1. Note that in this figure the time axis
extents to t � 200s.
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Figure 5.3: Output of the dithered system with δ having period p � 1 � 50. The ampli-
tude is A � 0 
 56 (upper) and A � 0 
 70 (lower), respectively. A smaller A gives thus a
less oscillating response.
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Figure 5.4: Output of the dithered system with δ having amplitude A � 1. The period
is p � 1 � 10 (upper) and p � 1 � 100 (lower), respectively. A smaller p gives a better
agreement between the responses of the dithered and smoothed systems.



Chapter 6

Applications

In this chapter we will present two applications of the averaging technique for the
analysis of dithered relay feedback systems. We discuss the DC/DC buck converter
and the position control of a DC motor. In both cases the actuator is essentially a
switch (a transistor for the buck converter and a H-bridge driver for the DC) so it is
modeled as a signum function. In power electronics the basic operations of circuits
such as DC/DC converters consist in a toggling among different configurations. This
switching operation is realized by using Pulse Width Modulation technique. So we
will show that in some cases PWM systems can be viewed as dithered relay feedback
systems in which the dither signal is a periodic sawtooth waveform.

6.1 DC/DC buck converter
Let us consider the basic topology of a buck converter reported in Figure 6.1. This
circuit realizes a DC/DC conversion controlling the voltage on the load identified by
the resistance R in the circuit. The circuit operates in closed loop since the voltage
on the load is compared with the reference signal and amplified by a constant gain.
This signal (control voltage) is then compared with a periodic sawtooth waveform and
the comparator switch on or switch off the transistor S depending on the result of the
comparator. In this way the circuit switches from a configuration with input voltage E
to a configuration with input voltage zero if the diode D conducts when the switch S is
OFF.

In the following we will assume that the buck converter is operating in Continuous
Conduction Mode (the inductor current never becomes zero so the diode conducts when
the switch S is OFF). The buck converter is governed by the following equations:

Cc
dvC
dt
� iL � vC

R
(6.1a)

Li
diL
dt
� vin � vC (6.1b)

where vin � E if the switch is ON and vin � 0 if the switch is OFF.
If we introduce the state vector x whose components are x1 m vC and x2 m iL, we
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Figure 6.1: Circuit topology of a DC/DC buck converter.

can write ẋ � Lx � b h u with

L � ��� � 1
RCc

1
Cc� 1

Li
0

�K�� � b h � �� 0
E
Li

��
(6.2)

and u � 0 if the switch is OFF and u � 1 if the switch is ON. The switch is pulse-
width modulated in the following mode: a controlled voltage vcon � k

�
vC � Vref � (with

k � 0) is compared with a sawtooth signal Vramp that varies between Vl and Vu. If the
controlled voltage vcon is smaller than the sawtooth, the switch is ON and conducts. So
we can write £ u � 0 � if Vramp � k

�
vC � Vref ��� 0

u � 1 � if Vramp � k
�
vC � Vref ��� 0 
 (6.3)

This means that ẋ � Lx � b h η � Vramp � k
�
Vref � vC ��� where η

� � � is the step function.

6.1.1 Converter model as dithered RFS
The buck converter model can be represented as in Figure 6.2

It is possible to do some blocks moving and transformations for obtaining a Relay
Feedback System dithered with a sawtooth signal. In fact the step function can be
viewed as η

�
z �¡� 0 
 5 � 1 � rel

�
z ��� (of course it occurs to redefine rel

�
0 ��� 1) and the

Vramp can be viewed as the sum of
�
Vu � Vl ��� 2 � Vl and δ

�
t � where δ

�
t � is the sawtooth

signal (defined in 3.15) of amplitude
�
Vu � Vl ��� 2.

In this way Figure 6.2 is equivalent to the scheme of Figure 6.3.
In practice the buck converter is the following RFS dithered with a sawtooth signal

δ
�
t � of amplitude A � � Vu � Vl �t� 2:
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Figure 6.2: Block diagram of a buck converter.

ẋ
�
t ��� Lx

�
t �� bn

�
cx
�
t �� δ

�
t �� r

�
t ���� b (6.4)

where the system matrix L has been written above,

b � 1
2

b h � 0 
 5 � �� 0
E
Li

�� � c �I� k Y 1 0 [ (6.5)

and
r
�
t �B� kVref � Vu � Vl

2
� Vl 
 (6.6)

The physical variable vc is now equal to � cx
�
t �t� k. It is not difficult to show that

the smoothed system corresponding to Equation (6.4) is the following:

ẇ
�
t ��� Lw

�
t �� bN

�
cw
�
t �� r

�
t ���� b 
 (6.7)

In fact if we introduce the error x � w we can write

ẋ
�
t �H� ẇ

�
t ��� L < x � t �H� w

�
t � = � b < n � cx

�
t �� r

�
t �� δ

�
t ���H� N

�
cw
�
t �� r

�
t ��� = (6.8)

that is equivalent to Equation (4.5) in the proof of the averaging theorem. So we can
apply whole the theory derived in Chapter 4 and Chapter 5.

Let us consider a constant reference r
�
t � � r. If we look at the smoothed sys-

tem (6.7) we can see that it is a PWL system in which the three configuration are affine
in w. We have three cells:

W1 �?� w : cw � r � A �
W2 �?� w : C cw CED A �
W3 �?� w : cw � r �G� A �!


The corresponding systems are

ẇ
�
t �B� Lw

�
t �� 2b for w � W1 �

ẇ
�
t �B� V L � bc

A X w
�
t �� b � 1 � r

A � for w � W2

ẇ
�
t �B� Lw

�
t � for w � W3 
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Figure 6.3: Block diagram of a buck converter as a dithered RFS.

The switching surfaces are

S1 �?� w : cw � r �G� A �
S2 �?� w : cw � r �?� A �!


It is clear that the origin is not an equilibrium point since it does not lies in W3 (here we
have the relation � kw1 � r ��� A º w1 � � r � A ��� k that does not hold for w1 � 0 and
r� A � 0). On the other hand the point w̄1 � � L 	 12b � Y E E � R [ T is an equilibrium
point only if relation � kE � r � A is satisfied, that is� kE � kVref � A � Vl � A º Vref � E � Vl

k



Otherwise we have only the equilibrium point in the linear region (cell W2).

6.1.2 Simulations
Let us consider a DC/DC buck converter with the following parameters: R � 22Ω � Li �
20mH � Cc � 47µF � E � 25V � Vref � 12V � Vl � 0 
 3V � Vu � 10V � k � 8 
 4 � f � 6kHz where
f � 1 � p is the switching frequency. We present some simulations results comparing
the output of the buck converter (the capacitor voltage vc) with the output of the corre-
sponding smoothed system.

In Figure (6.4) we can see both the signal. The corresponding phase plane portrait
is reported in Figure (6.5).

If we decrease the switching frequency we would expect a larger ripple in the output
of the buck converter. And in fact in Figure 6.6 we can appreciate the difference. The
corresponding phase plane portrait is reported in Figure 6.7. Dither theory validates
these results.

6.2 Position control of a DC motor
In this section we will present another application in which the PWM control system
can be viewed as a dithered relay feedback system.

Let us consider a DC motor that we can supply with a voltage Va. Our control
objective is to put the motor shaft at a desired angular position. The DC motor is
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Figure 6.4: Output voltage vc (solid line) of the buck converter with a step input of
amplitude Vref � 12V . The dash-dotted line is the corresponding signal of the smoothed
system. The switching frequency is f � 6kHz.

modeled as an electric (armature) circuit with a given armature resistance (Ra) and
inductance (La) and a mechanical subsystem with a inertia J and a viscous coefficient
β . The motor provides a torque proportional to the armature current ia.

We can write the differential equations that describe our physical system:

dθ
�
t �

dt
� ω
�
t � (6.9a)

J
dω
�
t �

dt
� kt ia

�
t �H� βω

�
t �H� TL

�
t � (6.9b)

La
dia
�
t �

dt
� va
�
t �H� Ria

�
t �H� keω

�
t � (6.9c)

In the following we will neglect the load torque: TL � 0. By introducing the state
vector x �ZY θ ω ia [ T we can write

ẋ � ����� 0 1 0

0 � β
J

kt

J
0 � ke

La
� R

La

� ����
x � ��� 0

0
va

La

� �� 
 (6.10)

In order to control the position of the motor shaft we need a position transducer. We
can use a potentiometer supplying it with a constant voltage Vs (we realize a voltage
divider) in such a way that the voltage at two terminals of the potentiometer is propor-
tional to the position of the motor shaft. The control action is performed by providing a
constant voltage Va to the motor by using a H-bridge driver. This device has a logic in-
put that select a positive or negative (in the same way as we invert the motor terminals)
supply voltage for the DC motor. The control loop is closed by amplifying the position
error and comparing this signal with a sawtooth waveform, like a PWM converter. The
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Figure 6.5: Phase plane diagram (solid line) of the buck converter with a step input
of amplitude Vref � 12V . The dash-dotted line is the corresponding trajectory of the
smoothed system. The switching frequency is f � 6kHz.

output of the comparator is the input of the H bridge driver (see Figure 6.8). In this case
the input of the linear system is positive or negative, so we have essentially a dithered
relay feedback system without the sum of a constant term at the output of the relay
input (as for the case of the buck converter in the previous section).

The transducer constant kpot is function of the supply voltage Vs and the resistance
of the potentiometer. For example if we use a potentiometer that allows a maximum
of 10 revolutions and has a total resistance of 5kΩ (the resistance varies 500Ω per
revolution) and we choose a dual supply voltage of � 5V , we have

kpot � 500
2π
� 1
5000

� 10 � 1
2π

V
rad

 (6.11)

6.2.1 Simulations
Let us consider a DC motor with the following parameters: R � 260Ω � La � 30mH � kt �
ke � 14 
 325mV � � rad � s 	 1 �;� β � 2 
 175mN � cm � � rad � s 	 1 �;� J � 34 
 8g � cm2. The trans-
ducer has the constant (6.11). The motor supply voltage is chosen Va � 10V and the
dither signal is chosen as a sawtooth swinging between � 1V and � 1V . Moreover we
use a proportional gain k � 0 
 42. The desired position angle is θref �I� 20 » , so that we

have Vref �?� 20
π

180
� 1
2π

V .
In Figure 6.9 the performances of a simple relay control system (without PWM)

are reported. The output is oscillatory and the system has a limit cycle of amplitude
0 
 25 » (see zoom in Figure 6.10).

In Figure 6.11 it is reported the step response of the closed loop system when the
dither frequency f is chosen equal to 50Hz.

It is possible to appreciate the presence of a ripple on the position signal due to the
low switching frequency. If we use a frequency f � 500Hz, the ripple is much more
attenuated (see Figure (6.12)).



6.2 Position control of a DC motor 69

0 0.005 0.01 0.015 0.02 0.025 0.03
0

2

4

6

8

10

12

14

16

18

t [s]

v C
 [V

]

Figure 6.6: Output voltage vc (solid line) of the buck converter with a step input of
amplitude Vref � 12V . The dash-dotted line is the corresponding signal of the smoothed
system The switching frequency is f � 2kHz.
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Figure 6.7: Phase plane diagram (solid line) of the buck converter with a step input
of amplitude Vref � 12V . The dash-dotted line is the corresponding trajectory of the
smoothed system. The switching frequency is f � 2kHz.
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Figure 6.8: Block diagram of the motor position control system.
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Figure 6.9: Step response of the position control system without PWM.
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Figure 6.10: Zoom of the Figure 6.9
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Figure 6.11: Step response of the position control system (solid line) and the cor-
responding smoothed system output (dash-dotted line). The switching frequency is
f � 50Hz.
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Figure 6.12: Step response of the position control system (solid line) and the cor-
responding smoothed system output (dash-dotted line). The switching frequency is
f � 500Hz.



Chapter 7

Conclusions

7.1 Summary
This thesis has focused on the problem of analysing relay feedback systems in which
the relay nonlinearity is forced with periodic high frequency waveforms (known as
dither signals). The aim of this technique, widely used in the practice, is to attenuate
nonlinear effects (limit cycle, sub-harmonics, chaos, etc.). Although dithering is not a
new idea, its effects in nonsmooth feedback systems are still not well understood.

This thesis gave some ideas and tools for studying such class of problems. The
main result is that a relay feedback system with a triangular dither signal at the in-
put of the hard nonlinearity can be viewed as a feedback system (without dither) in
which the relay is replaced by a saturation. While the amplitude of the dither signal af-
fects the slope of the saturation, the approximate equivalence between the dithered and
smoothed systems depends on the frequency of the dither signal. Studying a saturated
system is certainly simpler than studying a dithered relay feedback system.

Results given for triangular dither are valid also for sawtooth dither signals (ap-
plicative examples have been presented in chapter 6). Other types of dither signals
have been discussed in the thesis. In particular it has been shown how the shape of
dither can affect the behaviour of the dithered relay feedback system. Periodic signals
with time interval during which they are constant (zero-slope dither) does not satisfy
averaging principle and the can induce some strange phenomena in dithered systems.

A particular class of trajectories, called smooth-switching trajectories, has been dis-
cussed and an averaging theorem that relates this type of trajectories with the existence
of a limit cycle in the smoothed system has been derived.

On the other hand, looking at a design problem, explicit relations to achieve a
desired approximation error have been given. Furthermore analytical and practical
guidelines to design dithered systems have been presented.

7.2 Future work
The work presented in this thesis has investigated some problems that are far from
being totally understood. Thus future research is certainly possible on this topic. In the
following some interesting ideas are given.

• It would be worth to investigate the extension of averaging theorems for other
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types of piecewise linear systems in which, for example, the dynamic matrix
changes through a switching rule relay-like. Then a generalization of averag-
ing theory for nonlinear systems (not necessarily piecewise linear) with relay
nonlinearities would be very interesting.

• Design procedures derived by theoretical results and by using optimization tech-
niques such as LMIs are quite conservative. It would be interesting to investigate
different approaches in order to make more practical the bound on approximation
error. Maybe it would be useful approaching with a mean-case analysis rather
than a worst case.

• Stochastic dithering seems to be quite straightforward to analyse by using tools
presented in Chapter 3, but it could be worth to get deeper into the problem and
to exploit this approach in order to get some other interesting design procedures.

• All results derived in this thesis are valid for dynamic systems described by dif-
ferential equations. It would be very nice to find analogous results for discrete
time systems. Probably it is the most challenging problem among the listed
points and it would open the door at very interesting applications such as analy-
sis and design of sigma-delta converters.
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Appendix A

Mathematical review

In this appendix we introduce several mathematical concepts and tools that will be
used throughout the thesis. We also include a short introduction to dynamic systems,
including equilibrium points and limit cycles. Most of the concepts are derived from
(Khalil 2002).

A.1 Basic concepts
Let the field of real numbers be denoted by � , the set of n � 1 vectors with elements
in � by � n (n-dimensional Euclidean space), and the set of all m � n matrices with
elements in � by � m ß n . Let I denote the identity matrix and superscript (T ) denote
transpose. A matrix A is Hurwitz if the real part of each eigenvalue of A is negative.

A.1.1 Vector and matrix norms
The norm � x � of a vector x is a real-valued function with the following properties:

• � x � � x for all x �n� n , with � x �¡� 0 if and only if x � 0.

• � x � y � Dà� x ���á� y � , for all x � y �n� n (triangle inequality property).

• � αx ��� Cα C
� x � , for all α �n� and x �n� n .

The p-norm of a vector x � Y x1 � x2 �[�%�%�!� xn [ T �n� n is given by� x � p � � n

∑
i " 1
C xi C p � 1

p � 1 D p � ∞ (A.1)

and � x � ∞ � max
i
C xi CÈ
 (A.2)

The most commonly used norms are � x � 1 �â� x � ∞ and the Euclidean norm � x � 2 �` xT x. In this thesis, we reserve the notation C���C for the Euclidean norm of a vector.
The induced p-norm of a matrix A is defined by� A � p � sup

x ã" 0

� Ax � p� x � p � maxo x o p " 1
� Ax � p (A.3)
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where sup denotes the least upper bound (such as inf denotes the greatest lower bound).
For p � 1 � 2 � ∞ we have� A � 1 � max

j

m

∑
i " 1
C ai j CÈ�ä� A � 2 � � λmax

�
AT A �;�ä� A � ∞ � max

i

n

∑
j " 1
C ai j C

where λmax
�
AT A � is the maximum eigenvalue of the matrix AT A.

A.1.2 Signals norms
We will consider the space of signals u

�
t � : < a � b =b�� � m . We denote with ò m

p the space
of all the real signals u

�
t � with norm� u � t �K�Få

p
� V � ∞

0
� u � t �F� pdt X 1

p � ∞ 

So we have, for the space of piecewise continuous, bounded functions,� u � t �K� å

∞
� sup

t æ 0
� u � t �K� � ∞ �

while for the space of piecewise continuous, square-integrable functions,� u � t �K�Få
2
� ñ � ∞

0
uT
�
t � u � t � dt � ∞ 


A.1.3 Positive definite matrices
A matrix P � � n ß n is called symmetric if P � PT and positive definite (positive semidef-
inite) if xT Px � 0 (xT Px � 0) for all nonzero x � � n . P � 0 on S stands for xT Px � 0
for all nonzero x � S ç � n . We will write P � Q (P � Q) if the matrix P � Q is positive
definite (semidefinite). For a real symmetric matrix A it can be shown that A is positive
definite (semidefinite) if and only if the eigenvalues of A are positive (nonnegative).

Moreover for all matrices A � � n ß n (not necessarily symmetric and positive defi-
nite) the following inequality holds:

λmax
�
A �6� I � A � λmin

�
A �6� I

and λmax
�
A � is the minimum λ such that λ I � A. Analogously λmin

�
A � is the maximum

λ such that A � λ I.

A.2 Sets and neighborhoods
Definition A.2.1 A neighborhood of a point x is a set Nε

�
x � of all points y such thatC x � y C � ε . The number ε is the radius of Nε

�
x � .

Definition A.2.2 A point x is called limit point of the set X if every neighborhood of x
contains a point y c� x such that y � X.

Definition A.2.3 The set X is closed if every limit point of X is a point of X. The
closure of X is the set X̄ � X èn� x : x is a limit point of X � .

A point x of X is an interior point of X if there is a neighborhood Nε
�
x � of x such

that Nε
�
x � U X. X is open if every point of X is an interior point of X.

X is bounded if there exists a real number M � 0 and a point y � � n such that
X ç NM

�
y � .
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A.3 Gronwall-Bellman inequality
Let λ : < a � b =�� � be continuous and µ : < a � b =b�� � be continuous and nonnegative. If
a continuous function y : < a � b =b�� � satisfies

y
�
t �>D λ

�
t �b� � t

a
µ
�
s � y � s � ds

for a D t D b, then on the same time interval

y
�
t �>D λ

�
t �� � t

a
λ
�
s � µ � s � exp

� � t

s
µ
�
τ � dτ � ds 


In particular, if λ
�
t � m λ is a constant, then

y
�
t �>D λ exp

� � t

a
µ
�
τ � dτ ��


If, in addition, µ
�
t � m µ � 0 is a constant, then

y
�
t �>D λeµ � t 	 a � 


A.4 Dynamical systems
A time continuous dynamical system is described by the following differential equation

ẋ � f
�
t � x �

with x � � n . The previous mathematical model is used to describe a variety of physical
problems. Of course it is an interesting point if the mathematical model has a solution
x
�
t � that satisfies the initial-value problem

ẋ � f
�
t � x �;� x

�
t0 ��� x0 (A.4)

for t � t0.
The question of existence and uniqueness of solution is addressed by the following

theorem:

Theorem A.4.1 Suppose that f
�
t � x � is piecewise continuous in t and satisfies� f � t � x �H� f

�
t � y �K� D L � x � y �� x � y �Ì� n ��� t ��< t0 � t1 = . Then, the state equation ẋ � f

�
t � x � , with x

�
t0 � � x0, has a

unique solution over < t0 � t1 = .
A special case of dynamic system is when the function f does not depend explicitly on
time:

ẋ � f
�
x �;
 (A.5)

In this case we speak about a autonomous or time-invariant dynamical system.
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A.5 Equilibrium points
An equilibrium point x � of the system (A.5) is a point such that when the system starts
from the initial condition x � it will remain in x � for all future time. Then equilibrium
points x � are the roots of equation f

�
x �B� 0.

Definition A.5.1 The equilibrium point x � of system (A.5) is said stable if, for each
ε � 0 there exists a δ � 0 such thatC x � 0 �H� x � CE� δ º C x � t �H� x � C¤� ε ��� t � 0 

A stable equilibrium point x � is called asymptotically stable ifC x � 0 �H� x � CF� δ º lim

t � ∞
x
�
t ��� x � 


Moreover it is globally asymptotically stable if it is asymptotically stable for every
initial condition x

�
0 � � � n . We will say an equilibrium point x � to be exponentially

stable if there exist a α and β such thatC x � t �H� x � C¤D βe 	 αt C x � 0 �H� x � C 

A.6 Limit cycles
Definition A.6.1 (Periodic orbits and limit cycles) A system oscillates when it has a
nontrivial (we exclude constant solutions) periodic solution

x
�
t � T ��� x

�
t �;��� t � 0

for some T � 0. The image of a periodic solution in the state space is called a periodic
orbit or closed orbit. An isolated periodic orbit is called limit cycle.

Definition A.6.2 (Invariant sets) Let x
�
t � be the solution of (A.5). A point p is said

to be a positive limit point of x
�
t � if there is a sequence � tn � , with tn � ∞ as n � ∞,

such that x
�
tn � � p as n � ∞.

A set M is said to be an invariant set with respect to (A.5) if

x
�
0 ��� M º x

�
t ��� M � � t �n� 


In the previous definition, if a point belongs to an invariant set M, it belongs to M for
all time instants in the past and in the future. If we look only at future, we will say

Definition A.6.3 A set M is said to be a positively invariant set if

x
�
0 �>� M º x

�
t �>� M � � t � 0 


Definition A.6.4 We say that x
�
t � approaches a positive limit set M as t approaches

infinity if, for each ε � 0 there is a T � 0 such that

d
�
x
�
t ��� M �¡� ε ��� t � T

where
d
�
p � M �B� inf

x � M � p � x �¤
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In this framework a stable limit cycle is the positive limit set of every solution starting
sufficiently near the limit cycle (it is not necessarily globally stable). It is worth to
note that it is not necessary the existence of limt � ∞ x

�
t � although x

�
t � approaches the

positive limit set M.
We can define stability of limit cycles analogously as for equilibrium points:

Definition A.6.5 A neighborhood of a limit cycle γ of (A.5) is the set Uε
�
γ �¡�]� x �� n : d

�
x � γ � � ε � . A limit cycle γ is said stable if, for each ε � 0 there exists a δ � 0

such that
x
�
0 �>� Uδ º x

�
t �>� Uε ��� t � 0 


A stable limit cycle γ is called asymptotically stable if

x
�
0 �>� Uδ º lim

t � ∞
d
�
x
�
t ��� γ �B� 0 


Moreover it is globally asymptotically stable if it is asymptotically stable for every
initial condition x

�
0 � �Ì� n . We will say a limit cycle γ exponentially stable if there

exist a α and β such that

d
�
x
�
t �;� γ ��D βe 	 αt d

�
x
�
0 ��� γ ��



