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ABSTRACT The main motivation of this work is to propose a simulation approach for a specific task within
the Unmanned Aerial Vehicle (UAV) field, i.e., the visual detection and tracking of arbitrary moving objects.
In particular, it is described MAT-Fly, a numerical simulation platform for multi-rotor aircraft characterized
by the ease of use and control development. The platform is based onMatlab R© and theMathWorks

TM
Virtual

Reality (VR) and Computer Vision System (CVS) toolboxes that work together to simulate the behavior of
a quad-rotor while tracking a car that moves along a nontrivial path. The VR toolbox has been chosen due
to the familiarity that students have with Matlab and because it does not require a notable effort by the
user for the learning and development phase thanks to its simple structure. The overall architecture is quite
modular so that each block can be easily replaced with others simplifying the code reuse and the platform
customization.
Some simple testbeds are presented to show the validity of the approach and how the platform works. The
simulator is released as open-source, making it possible to go through any part of the system, and available
for educational purposes.

INDEX TERMS Educational, Matlab/Simulink, image-based visual servoing, trajectory control, vision
detection and tracking, software-in-the-loop, unmanned aerial vehicles, multi-rotor.

I. INTRODUCTION
Unmanned Aerial Vehicles (UAVs), although originally
designed and developed for defense and military purposes
(e.g., aerial attacks or military air covering), in the recent
years gained an increasing interest and attention related to
civilian use. Nowadays, UAVs are employed for several tasks
and services like surveying and mapping [1], for spatial
information acquisition and buildings inspection [2], data
collection from inaccessible areas [3], agricultural crops and
monitoring [4], manipulation and transportation or navigation
purposes [5].

Many existing algorithms for the autonomous control [6]
and navigation [7] are provided in the literature, but it
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is particularly difficult to make the UAVs able to work
autonomously in constrained and cluttered environments or
also indoors. Thus, it follows the need for tools that allow
to understand what it happens when some new applications
are going to be developed in unknown or critical situations.
Simulation is one of such helpful tools, widely used in
robotics [8]–[12], whose main benefits are costs and time
savings, enabling not only to create various scenarios, but also
to carry out and to study complex missions that might be time
consuming and risky in real world applications. Moreover,
bugs and mistakes cost virtually nothing: it is possible to
crash a vehicle several times and thereby getting a better
understanding of implemented methods under various condi-
tions. Thus, simulation environments are very important for
fast prototyping and educational purposes, although they may
have some drawbacks and limitations, such as the lack of
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noisy real data or the fact that simulated models are usually
incomplete or inaccurate. Despite the limitations, the advan-
tages that the simulation provides are more, as like as to
manage the complexity and heterogeneity of the hardware,
to promote the integration of new technologies, to simplify
the software design, to hide the complexity of low-level
communication [13].

Different solutions, typically based on external robotic
simulators such as Gazebo [14], V-REP [15], AirSim [16],
MORSE [17], are available. They employ recent advances
in computation and computer graphics (e.g., AirSim is a
photorealistic environment [7]) in order to simulate physi-
cal phenomena (e.g., gravity, magnetism, atmospheric con-
ditions) and perception (e.g., providing sensor models) in
such a way that the environment realistically reflects the
actual world. In some cases, those solutions do not have
enough features that could allow to create large scale complex
environments close to reality. On the other hand, when the
tools provide such possibilities, they are difficult to use or
they require high computational capabilities [16]. Definitely,
it comes out that simulating the real world is a nontrivial
task, not only due to multiple phenomena that need to be
modeled, but also because their complex interactions ask the
user a notable effort for the learning and development phase.
For all such reasons, having a complete software platform
that makes possible to test different algorithms and control
strategies for UAVs moving in a simulated 3D environment
is increasingly important both for the whole design process
and for educational purposes.

In this paper, it is presented a software platform in which
detection, tracking and control algorithms can be evaluated
and tested all together in a 3D graphical tool. Due to the sim-
ple implementation and the limited possibilities of interfacing
it with dedicated middlewares (e.g., ROS [18], YARP [19],
GenoM [20]), the proposed platform should be meant with
an educational purpose. However, that does not imply a
loss of generality nor makes the platform less important.
Indeed, as highlighted in [21], the use of interactive learning
approaches allows students to improve their technical knowl-
edge and communication skills, giving them the experience of
what they will encounter in a real world environment. There-
fore, the platform can be appreciated for its potentialities
thanks to the advantages coming from the use of a Software-
in-the-loop (SIL) approach [6], [22], [23]. In other words,
the functionalities provided by the simulator can be easily
expanded by students, researchers, and developers modifying
or integrating new vehicles dynamics (e.g., hexarotor [24],
fully actuated platform [25]), control algorithms (e.g., geo-
metric control laws [26], flatness-based control methods [27])
or detection and tracking techniques (e.g., YOLO [28], [29],
Fast R-CNN [29], [30]) for their purposes.

Compared to the commercial and open-source platforms
available in the literature [31]–[35], the proposed framework
runs on a built-in environment (i.e., Matlab and its tool-
boxes) and has no constraints in terms of hardware (e.g.,
memory, unit processor, etc.). Moreover, the simulator is

FIGURE 1. Three consecutive frames produces as output by the CAMShift
algorithm while tracking the target. The image and the bounding box
centroids as well as the distance vector among centroids are depicted
(see Sec. IV).

self-contained (i.e., everything is in one place) and can also be
used by people without programming skills (i.e., algorithms
are typically written in the most common programming lan-
guages). Matlab and the Computer Vision System (CVS)1

and Virtual Reality (VR)2 toolboxes are the only tools the
user needs to work with.

The specific domain of interest regards the behavior
of multi-rotor aircraft acting in accordance with the
Image-Based Visual Servoing (IBVS) approach [36], [37].
The eye-in-hand camera configuration [38] along with the
pinhole camera model is considered for the aerial vehicle.
Compared to other approaches [39], the camera is rigidly
attached to theUAV frame andmoves according to the aircraft
motion.

The application that is considered is an extension of the
authors’ previous work [40], that has been revised for making
the aircraft able to detect and track a specific object (a car)
moving along a nontrivial path. This simple scenario is used
as a testbed to show: (i) how the platform works, (ii) the
elements that make up the software architecture, and (iii) the
adaptability of the platform to the different needs of the user.
Compared to the previouswork, a tracking algorithm has been
added into the loop: the classifier is used to detect the target
only at the first step or in case of partial occlusions. Apart
from such scenarios, a Continuously Adaptive Mean-Shift
(CAMShift) tracking algorithm [41] is employed to follow
the car along the path, thus reducing the computational bur-
den and the possibility to lose the target during the tracking.
Moreover, in this paper it is proposed a novel procedure
based on ad hoc Matlab scripts that automatically select the
bounding box area of the target (see, Fig. 1) avoiding to use
specific Matlab tools, such as Training Image Labeler. These
scripts also allow comparing various classifier configurations
to help select the most suitable for the case study among
different features types (e.g., Haar, HOG, LBP) [42] and
number of training stages. Finally, the software platform is
published as open-source3 with the aim to share results with
other researchers, students, and developers that might use the
platform for testing their algorithms and understanding how

1https://www.mathworks.com/products/computer-vision.html
2https://www.mathworks.com/products/3d-animation.html
3https://github.com/gsilano/MAT-Fly
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FIGURE 2. The proposed software platform architecture. Arrows
represent the data exchanged among blocks and how they interact with
each other. Colors point out the four parts making up the system: the
classifier training phase (in blue), the vision-based target detection and
tracking (in green), the flight control system (in yellow), and the
Matlab VR toolbox (in red).

different approaches can improve the performance and affect
the system stability.

The paper is organized as follows. Section II explains
the simulation scenario and its functionalities. The classi-
fier training phase and the vision-based target detection and
tracking algorithms are presented in Sec. III and IV, respec-
tively. Section V briefly describes the quad-rotor model while
numerical results and the control algorithm are reported in
Sec. VI. Finally, Section VII concludes the paper.

II. SYSTEM DESCRIPTION
This section aims to describe MAT-Fly and how it works
together with the Matlab VR and CVS toolboxes. An illus-
trative application, i.e., the object tracking example, where
a drone tracks a car moving along a nontrivial path is con-
sidered. An overview of the main elements that make up the
system is depicted in Fig. 2.

The software platform is mainly divided into four parts:
the classifier training phase (see, Sec. III), the vision-based
target detection and tracking (see, Sec. IV), the flight control
system (see, Sec. VI), and the Matlab VR toolbox. To facili-
tate the development of various control and computer vision
strategies and the reuse of existing software components,
the systemwas set up using amodular approach splitting each
functionality into interchangeable modules. In other words,
each part of the system (e.g., the vision-based target detection
and tracking, the flight control system) was developed by
isolating every feature (e.g., the detection algorithm, the ref-
erence generator) in such a way they can be easily replaced
with others by facilitating the test and evaluation process.

The Matlab VR toolbox allows to simulate a scenario as
much similar as to the real world accounting for the interac-
tion between complex dynamic systems with the surrounding
scenario. Moreover, thanks to animation recording function-
alities, frames and videos from the scene can be acquired and
used to implement an IBVS problem. Also, the tool makes

FIGURE 3. Initial frame extracted from the object tracking example. The
steering angle visualizer allows monitoring the car movements along the
path.

FIGURE 4. The control scheme. Subscript d indicates the drone variables,
while r represents the references to the controller. Each block is mapped
with the section that describes its content to help matching the blocks
with the corresponding description within the paper.

it easy to add external viewpoints to monitor any moving
object in the 3D environment from different positions and
orientations.

One of the available examples4 (specifically the
vr_octavia_2cars example) that describes a quite detailed
dynamical model of a car moving along a nontrivial path was
used as a starting point (see, Fig. 3). The example represents
a standard double-lane-change maneuver [43] conducted in
two-vehicles configuration, where one engages the Electronic
Stability Program (ESP) control while the other switches
off such control unit when changing the lane. From this
perspective, a simpler scenario was considered by removing
one of the two vehicle configurations, i.e., the car without
the ESP controller.

Then, an external viewpoint was added to the scheme for
simulating the behavior of a quad-rotor that flies by observing
the car moving along the path. In Matlab VR a viewpoint has
six Degrees of Freedoms (DoFs): the spatial coordinates x,
y, and z, and the angles yaw (ψ), pitch (ϑ), and roll (ϕ). The
whole process is the following: images are updated according
to the position and the orientation of the quad-rotor w.r.t. the
car; such images are acquired and elaborated for getting the
necessary information to detect and track the target, and to run
the control strategy designed for the tracking problem. The
outputs of the control algorithm consists of the commands
uϕ , uϑ , uψ , and uT that should be given to the drone in order
to update its position (xd , yd , and zd ) and orientation (ϕd , ϑd ,
and ψd ), see Fig. 4.

4The list of the ready-to-use scenarios is accessible
at https://goo.gl/rtEx3S.
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FIGURE 5. Simulink scheme employed for simulating the drone and car dynamics in the 3D simulation environment.

It is worth noticing that ground truth data are used by the
tracking controller (see, Sec. VI). Therefore, any analysis can
be conducted on the correctness of the data and how this
affects the navigation. However, this does not constitute a
limitation for the proposed framework thanks to the modular
interface exhibited by the platform [44].

In Figure 5 the Simulink scheme employed for simu-
lating the drone and the car dynamics is reported. The
esp_on and the coordinates_transformation blocks com-
pute the steering angle, the linear velocity and the posi-
tion of the car, and all forces needed to follow a given
path. Instead, the observer_position and rotation_matrix
blocks represent the aircraft position and orientation (it is
expressed by using the direction cosine matrix [45] and
the Rodrigues’s formula [46]), respectively. The processed
data are sent to the VR Visualization block that takes
care of the drone and car movements in the simulated
scenario.

Note that Matlab VR adopts a reference system
(OFVR) [47] slightly different from the classic fixed reference
frame OFI (see, Sec. V), thus simple references transforma-
tions have been taken into account in all elaborations.

Finally, the Simulink scheme saves the current car posi-
tion (xcar, ycar, and zcar), used for comparing the drone and
the car trajectories (see, Sec. VI-A), and frames of the vir-
tual scenario observed from the drone point of view. Those
frames are used, as described in next sections, for pattern
recognition.

III. CLASSIFIER TRAINING PHASE
The classifier training phase is the most important part of the
system: the object detection and tracking depend on it.Matlab

scripts have been developed to automate the entire procedure,
from the frames acquisition to the classifier synthesis and
performance evaluation. To this aim, the training process
has been divided into four parts, as depicted in Fig. 2: the
frames acquisition, the bounding box selection, the classifier
synthesis and the performance evaluation.

A. FRAMES ACQUISITION
When going to train a classifier, a high number of images
is needed. The images are divided into two groups: positive
(that contain the target) and negative images. Following what
described in [46], 2626 positive and 10504 negative images
were used achieving a 1 : 4 ratio in accordance to the Pareto’s
principle (aka the 80/20 rule).

For the frames acquisition, a simulation was performed
with the quad-rotor moving along a spiral trajectory
around the car parked in its initial state (see, Fig. 6).
The aircraft attitude and position have been computed
for each frame so as described by the sphere surface
equations, 

y = r cosβ
x = r sinβ sinα
z = r sinβ cosα,

(1)

where r , the sphere radius, is the distance between the car and
the drone (assumed to be fixed and equal to 15 meters), and
together with α ∈ [0, 2π ] and β ∈ [0, π/2] angles, identifies
the drone position in the 3D space, as depicted in Fig. 6.
A video showing the quad-rotor camera point of view while
observing the car parked in its initial state while following the
spiral trajectory is available in [48].

39336 VOLUME 9, 2021



G. Silano, L. Iannelli: MAT-Fly: Educational Platform for Simulating UAVs Aimed to Detect and Track Moving Objects

FIGURE 6. Drone trajectory around the car parked in its initial state
during the frames acquisition phase.

FIGURE 7. Frames obtained by the images segmentation process. From
the RGB file format (a) to the cropped image (e) the steps are shown,
sequentially.

B. BOUNDING BOX SELECTION
To train the classifier, the Region of Interest (ROI) of the
target needs to be computed. Due to the high number of
images, manual labeling tools, such as the MathWorks Train-
ing Image Labeler, cannot be used. Thus a Matlab script
was developed to automatically select the bounding box area
surrounding the target. The image segmentation process was
used to simplify and to change the image representation: from
RGB to grayscale (Figs. 7(a) and 7(b), respectively). The
result is a set of contours that make the image meaningful and
easier to analyze: each group of pixels in a region is similar
w.r.t. some characteristics or computed properties, intensity,
or texture, while adjacent regions are significantly different
w.r.t. the same properties.

To automatically select each group of pixels, the Balanced
Histogram Thresholding (BTH) method [49] was used. Such

FIGURE 8. Histogram of the image data. The red line, i.e., the grayscale
threshold, divides the graph into two parts: the background and the
foreground. The gray gradient bars indicate the associated color to each
x-value, from 0 to 255.

a method allows to separate the background from the fore-
ground image by dividing the data into two main classes (see,
Fig. 8) and by searching for the optimum threshold level.

Starting from the foreground grayscale image (see,
Fig. 7(b)), the script deals with labeling the individual blobs
by using the connected-component labeling algorithm [46]
with a fixed heuristic (8-connected, in the considered case).
In Figure 7(c) the obtained blobs are depicted with different
colors and numbers for visual convenience. Then, the script
selects the blob that meets the criteria in terms of size and
intensity (chosen to match the target properties) in order to
obtain a unique bounding box surrounding the target (see,
Figs. 7(d) and 7(e)). Finally, the script provides as output
a MAT-file containing, for each positive image, the suit-
able ROI components, i.e., the bounding box centroid, its
width and height. This file is used for the classifier synthesis
in the target detection design process (see, Fig. 2).

The proposed approach allows to automatically label the
target (the car) from the positive images, thus decreasing the
time spent for the training phase. In Figure 7, for a single
sample frame, all elaboration steps are reported.

On the considered data set, the script was able to auto-
matically detect the ROIs with an error of 8.18%: the target
was not recognized only in 215 frames out of 2626 positive
images, and the first ROI loss appeared at the 1791th frame.

C. CLASSIFIER SYNTHESIS
The Viola & Jones algorithm [50] was chosen as object
detection framework to recognize the car along the path. The
algorithm was originally designed and developed for face
detection problem, but it can be easily trained to detect any
object [51] by using different features types (e.g., Haar, HOG,
LBP) [42] and training stages.5 Although even more com-
plicated and performing object detection frameworks (e.g.,
YOLO [28], [29], Fast R-CNN [29], [30]) are available in the
literature, historical reasons motivated this choice: the Viola

5This is common in cascade classifiers where each stage is an ensemble
of weak learners, i.e., simple classifiers called decision stumps.
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FIGURE 9. Detection results obtained by using Haar, HOG and LBP
feature types. The false alarm and true positive rates are 0.001 and 0.995,
respectively, while the number of training stages is 4. Two different target
models are considered: the ‘‘corrected’’ and ‘‘uncorrected’’ version.

& Jones classifier was the first object detection framework
in real-time. Thus, it is of interest, at least for educational
purposes, to have a simulation platform that performs object
detection with such a solution.

For the considered testbed, the Haar features were used
to design the classifier. These features along with LBP are
often used to detect faces due to their fine-scale textures while
HOG features are often employed to detect objects. However,
the obtained results suggested to choose Haar features which
appeared more useful for capturing the overall shape of the
target (see, Fig. 9) even if longer time was needed during the
training phase.

D. PERFORMANCE COMPARISON
When designing a cascade object detector, the number of
training stages, the false alarm and true positive rates, need
to be tuned in accordance to the required performance (e.g.,
accuracy) and constraints (e.g., time response). To facilitate
the analysis as well as to find the most suitable set of param-
eters that fit the problem, a Matlab script was developed to
evaluate the performance of the classifier. This script is part
of the proposed software platform (see, Fig. 2) and allows
to compare in a few steps various configurations and models
getting a general overview of how the object detector behaves.

In Fig. 9 the results obtained for a single sample frame
are reported. Two different models were considered to prove
the validity of the proposed approach: the uncorrected and
corrected models. The first one uses the ROIs automatically
extracted from the algorithm presented in Sec. III-B, while
the second one employs those obtained using the Matlab tool
Training Image Labeler. In all revelations, the car is only par-
tially detected despite the large number of images employed
to train the classifier. Except for some cases, there are no
revelation errors: different bounding boxes are detected in the
image. This is probably due to the absence of photorealism
in the collected frames. As described in [52], the reality gap
(i.e., realistic geometry, textures, lighting conditions, camera
noise, and distortion) affects the performance of computer

FIGURE 10. Bounding box selection algorithm. The detection results are
obtained by using the Haar cascade features type. The maximum (left)
and average (right) bounding boxes are computed by using the result
obtained from detection (center).

vision algorithms. On the other hand, they introduce enough
‘‘useful noise’’ to help the detection (the presence of several
image view points).

Many tests have been conducted in order to assess the true
performance of the classifier. As shown in Figs. 9(b) and 9(c),
the detection results are very similar for both models.
Thus, it is a good approximation to consider the ‘‘uncor-
rected’’ ROIs instead of the ‘‘corrected’’ version in the clas-
sifier design process. Such approximation allows to save
time during the training phase thus avoiding to use specific
tools, such as the Matlab tool Training Image Labeler, when
the ROI detection fails. Moreover, it proves the validity and
the effectiveness of the automatic tool procedure for bounding
box selection. Of course, further tests may be carried out con-
sidering more valuable evaluation criteria, such as confusion
matrix, accuracy, precision, recall, specificity [29].

IV. VISION-BASED TARGET DETECTION
The vision-based target detection phase sets up the IBVS
problem using the classifier and tracking algorithms as feed-
back from the environment (see, Fig. 2). There are four
components that constitute this part: the vision target selector,
the detection and tracking algorithm, and the distance vector
computing.

The vision target selector takes care of switching between
the detection and the tracking algorithms based on the recog-
nition results: the detector is used only at the first step or
in case of partial occlusion, otherwise a CAMShift tracking
algorithm [46] is employed to follow the car along the path.
This algorithm performs target tracking by searching for its
probability distribution pattern in a local adaptive size win-
dow. Although it does not guarantee the best performances,
the algorithm supplies reliable and robust results [53].

Due to multiple target revelations (see, Sec. III-D), a Mat-
lab script was used to obtain a unique bounding box surround-
ing the target (the car). The script computes the maximum
(Fig. 10(a)) and the average (Fig. 10(c)) bounding boxes,
as shown in Fig. 10. The maximum approach puts more trust
in the detection results, while the average approach tries to
filter out the revelation errors. The ‘‘good’’ choice depends
on the particular employed classifier and on the amount of
frames used during the training phase. For the considered
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FIGURE 11. The diagram shows how frames are processed once the
target is detected. The distance vector and the bounding box are
represented in blue and yellow, respectively. The image (uimg, vimg) and
bounding box (ubb, vbb) centroids are also reported.

testbed, the maximum bounding box was chosen to figure out
the IBVS problem.

Once the target has been recognized, the distance vector
computing block generates the references for the drone trajec-
tory control (see, Sec. VI and Fig. 4) measuring the distance
between the image (uimg, vimg) and bounding box (ubb, vbb)
centroids, as depicted in Fig. 11. The vector aims to provide
the reference signals (eu and ev) to move the drone so that the
center of the bounding box surrounding the car overlaps the
centroid of the image.

V. DRONE DYNAMICAL MODEL
For the specific case study, a quad-rotor in a plus configura-
tion has been considered. The design of a high performance
attitude and position controller requires often an accurate
model of the system. It is here recalled the commonly used
dynamical model of a quad-rotor [54] and, by following
usual approaches, two orthonormal frames are introduced:
the fixed-frame OFI (where FI stands for Fixed Inertial), also
called inertial (or reference) frame, and the body-frameOABC
(where ABC stands for Aircraft Body Center) that is fixed in
the aircraft center of mass and is oriented according to the
aircraft orientation, see Fig. 12.

The translational dynamic equations of the aircraft can be
expressed in the inertial frame as follows:

mξ̈̈ξ̈ξ = −mgEz + uTR(ϕ, ϑ,ψ)Ez, (2)

where g denotes the gravity acceleration, m the mass, uT the
total thrust produced by the rotors, ξξξ = (x, y, z)> ∈ R3 the
drone position expressed in the inertial frame,Ez = (0, 0, 1)>

is the unit vector along the Z -axis, while R(ϕ, ϑ,ψ) ∈ R3×3

is the rotation matrix from the body to the inertial frame
and it depends on the attitude ηηη = (ϕ, ϑ,ψ)> ∈ R3

(i.e., Euler angles roll, pitch, and yaw, respectively) that
describes the body-frame orientation according to the ZYX
convention [55]. Furthermore, the rotational dynamics can be
expressed as

Iω̇̇ω̇ωB = −ωωωB × IωωωB + τττ , (3)

where ‘×’ denotes the vector product,ωωωB = (ωx , ωy, ωz)> ∈
R3 is the angular velocity vector expressed in the body-frame,
I = diag(Ix , Iy, Iz) ∈ R3×3 is the inertia matrix of the vehicle

FIGURE 12. Drone in the body-frame (OABC) and the fixed-frame (OFI)
reference systems. Forces produced by each rotor, spin directions and
propeller velocities, �i , are also reported.

w.r.t. its principal axes, and τττ = (uϕ, uϑ , uψ )> ∈ R3 is the
control torque vector obtained by actuating the rotors speeds
according to the rotors configuration and the vehicle shape.

At low speeds and around the hovering state, the simplified
dynamic model consists of six second order differential equa-
tions obtained from balancing forces and momenta acting
on the drone, where c• and s• denote the cos(•) and sin(•)
functions, respectively:

Ix ϕ̈ = ϑ̇ψ̇
(
Iy − Iz

)
+ uϕ, (4a)

Iyϑ̈ = ϕ̇ψ̇ (Iz − Ix)+ uϑ , (4b)

Izψ̈ = ϑ̇ ϕ̇
(
Ix − Iy

)
+ uψ , (4c)

mẍ = uT
(
cϕsϑcψ + sϕsψ

)
, (5a)

mÿ = uT
(
cϕsϑ sψ − sϕcψ

)
, (5b)

mz̈ = uT cϑcϕ − mg, (5c)

with

uT = bf
(
�2

1 +�
2
2 +�

2
3 +�

2
4

)
, (6)

and uϕuϑ
uψ

 = bf
bm

 bml
(
�2

4 −�
2
2

)
bml

(
�2

3 −�
2
1

)
−�2

1 +�
2
2 −�

2
3 +�

2
4

 , (7)

where �i, i ∈ {1, 2, 3, 4}, are the actual rotors angular
velocities expressed in rad s−1, l is the distance from the
propellers to the center of mass, while bf and bm are the thrust
and drag factors, respectively. Further details can be found
in [45], [54], [55]. Table 1 reports the parameters values of
the drone for the considered case study (see, Sec. VI-C).

VI. FLIGHT CONTROL SYSTEM
Various state-of-the-art solutions investigate the trajectory
tracking problem with quad-rotors. However, not all of them
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TABLE 1. Drone parameter values for the considered case study.

FIGURE 13. The reference generator scheme referred to virtual reference
system (OFVR). The obtained heuristic PID gains are: KPψr

= 1 · 10−5,

KIψr
= 1 · 10−3, KPϑr

= 1 · 10−5, KIϑr
= 1 · 10−3, KPxr

= 1 · 10−6,

KIxr
= 6 · 10−6, KPyr

= 1 · 10−2, KIyr
= 1 · 10−2, KPzr

= 15, KIzr
= 57.5

and KDzr
= 3.75.

are suitable for the specific case of application [56]. There-
fore, with the aim of illustrating a control designmethodology
exploiting the IBVS approach, it has been considered the
flight control system described in [45] and [57] that uses a
reference generator and an integral backstepping controller
to figure out the drone trajectory tracking problem. The ref-
erence generator extracts the information from the images to
generate the path to follow, while the Integral Backstepping
(IB) controller uses those references to compute the needed
drone command signals. Figures 13 and 15 describe the over-
all control scheme.

A. REFERENCE GENERATOR
The reference generator is decomposed into two parts: the
attitude and the position controller, both illustrated in Fig. 13.
The attitude controller tunes the yaw (ψr ) and the pitch
(ϑr ) angles trying to overlap the image (uimg, vimg) and the
bounding box (ubb, vbb) centroids (see, Fig. 11), while the roll
(ϕr ) angle is computed by the IB controller.6 These values
are later used by the position controller to vary the drone
reference position zr and yr , while xr is computed comparing

6All elaborations are expressed in the OFVR reference system.

FIGURE 14. The car (in blue) and the output of the reference generator
(in red) while tracking the target.

the detected area areabb with those obtained when training
the classifier arearef7

The proposed control architecture is based on control loops
that are nothing but Proportional-Integral-Derivative (PID)
controllers. These are a standard solution in the literature for
quad-rotor control design [58]. For the considered case study,
the vehicle starts flying 4 meters over the ground (Z -axis)
with a distance of 15 meters from the car along the X -axis in
the OFVR reference system.

Figure 14 reports the trajectories followed by the car and
the drone when running the simulation, while a further video
has been made available at [59].

B. INTEGRAL BACKSTEPPING CONTROLLER
The integral backstepping of [45], [54] has been used as tra-
jectory controller for the path tracking. It performs robustness
against external disturbances (offered by backstepping) and
sturdiness w.r.t. model uncertainties (given by the integral
action). Starting from the outputs of the reference generator,
the IB controller computes the orientation (ϕrefIB and ϑrefIB )
that the drone should assume to follow the reference path (xr
and zr ). The ϕrefIB and ϑrefIB reference angles are computed
as:

ϑrefIB =
m
uT

[(
1− c21 + λ1

)
ex + (c1 + c2) exIB

+ −c1λ1

∫ t

0
ex(τ )dτ

]
, (8a)

ϕrefIB =−
m

uT

[(
1− c23 + λ2

)
ez + (c3 + c4) ezIB

+ −c3λ2

∫ t

0
ez(τ )dτ

]
, (9a)

with

exIB (t) = λ1

∫ t

0
ex(τ )dτ + c1 ex(t)+ ėx(t), (10a)

ezIB (t) = λ2

∫ t

0
ez(τ )dτ + c3ez(t)+ ėz(t), (10b)

7This values is obtained as sample of mean of the collected ROIs while
training the classifier (see, Sec. III-A).
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FIGURE 15. The drone trajectory controller. All variables are expressed in
the virtual reference system (OFVR). Here we recall the heuristic control
gains employed into the simulation scenario: KPyatt

= 1000,
KDyatt

= 200, KPϕatt
= 8, KDϕatt

= 4, KPϑatt
= 12, KDϑatt

= 4,

KPψatt
= 10, and KDψatt

= 4.

and

ex = xr − xd , (11a)

ez = zr − zd . (11b)

For the considered motivating examples, the following values
have been chosen: λ1 = 0.025, λ2 = 0.025, c1 = 2, c2 = 0.5,
c3 = 2 and c4 = 0.5. Figure 15 shows the overall control
system architecture.

C. NUMERICAL RESULTS
To prove the validity and effectiveness of the proposed frame-
work, numerical simulations have been carried out by using
the 2015b release of Matlab equipped with CVS and VR
toolboxes.8 The video available at [60] illustrates in a direct
way how the system works, i.e., the ability of the quad-rotor
to follow the car that moves along the nontrivial path. In addi-
tion, the video shows the behavior of the detection and
tracking algorithms that never lose the target while tracking
the target. Moreover, the video shows the capabilities of the
control system in reacting to changes in the car’s dynamics:
during the double lane change maneuver the vehicle suddenly
increases its speed and the aircraft tilts around the X -axis (the
car seems to climb a hill9) to capture the shift in the dynamics.
A further scenario (the video is available at [61]) was

considered to show how the simulation can be easily cus-
tomized without the need to redesign the entire system. The
numerical example aims to show how the performance of

8The simulator is fully compatible with each further release of Matlab.
9The drone flies in an eye-in-hand configuration, i.e., tilts around the axis

direct affects the camera orientation.

the detection and tracking algorithms can be easily evaluated
while running alongside the drone tracking controller. Two
cars are considered for the case of interest. One (red car)
engages the ESP control while the other (yellow) switches off
such control unit when changing the lane. As it can be seen
from the video, the search window adapts its sizes in response
to partial occlusions of the target.
Finally, the video at [62] shows the advantages of using a

modular architecture for the platform. The video shows how
the whole system architecture can be tested under various
conditions simply changing the scenario.10 As shown in the
video, halfway through the simulation (26 s) increasing the
speed of the car causes the drone to tilt excessively moving
to instability.
The proposed scenarios demonstrate as the software plat-

form allows to test the complex system while interacting with
the surrounding environment and computer vision and control
algorithms are in the loop.

VII. CONCLUSION
In this paper, a numerical simulation platform for multi-rotor
aircraft based on Matlab and the MathWorks Virtual Reality
and Computer Vision System toolboxes has been described.
The platform makes easy to implement and to simulate
complex scenarios where computer vision algorithms can
be run and tested together with drone tracking controllers.
The simulator provides a ready-to-use environment allow-
ing students, researchers, and developers to easily test and
evaluate their own algorithms. The platform also constitutes
the first step towards the development of a more structured
software tool where exploiting the advantages of software-
in-the-loop simulations. The software has been released as
open-source3 making it possible to go through any part of the
system. Future work includes the integration of the platform
with more advanced robotics middleware and the creation of
the interface with the hardware moving toward hardware-in-
the-loop tests.
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