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Abstract
This article studies the solutions of time-dependent differential inclusions which is
motivated by their utility in optimization algorithms and the modeling of physical sys-
tems. The differential inclusion is described by a time-dependent set-valued mapping
having the property that, for a given time instant, the set-valued mapping describes
a maximal monotone operator. By successive application of a proximal operator, we
construct a sequence of functions parameterized by the sampling time that corresponds
to the discretization of the continuous-time system. Under certainmild assumptions on
the regularity with respect to the time argument, and using appropriate tools from func-
tional and variational analysis, this sequence is then shown to converge to the unique
solution of the original differential inclusion. The result is applied to develop con-
ditions for well-posedness of differential equations interconnected with nonsmooth
time-dependent complementarity relations, using passivity of underlying dynamics
(equivalently expressed in terms of linear matrix inequalities).
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1 Introduction

The theory of monotone operators emerged as an important area of research within
the field of nonlinear analysis in early 1960’s [32,40,67]. Since then, we have seen
applications of such operators in various disciplines, which include, but are not limited
to, optimization algorithms, dynamical systems, and partial differential equations.
Recent articles [6,20,57] provide an overview of monotone operators appearing in
optimization algorithms. The relevance of set-valued mappings in dynamical systems
observed in [9,42], where the differential inclusionswithmaximalmonotone operators
are analyzed. Even in the systems of partial differential equations, the appearance of
these operators brings tractability to proving existence of solutions [14,39,59,68].
Applications of dynamical systems with maximal monotone operators range from
modeling traffic equilibrium [44] to electronics [1]. Relativelymodern texts on analysis
of monotone operators are [7,51,61].

This article is focused on studying maximal monotone operators in the context of
mathematical models for dynamical systems, and the central object of our study is to
investigate conditions for existence of solutions to the differential inclusion

ẋ ∈ −F(t, x), x(0) ∈ dom F(0, ·), (1)

where F : [0,∞)×R
n ⇒ R

n has the property that, for each t ≥ 0, F(t, ·) is amaximal
monotone operator. In studying this generic class of systems, we will refer to other
types of nonsmooth dynamical systems which can be recast in the form (1). From a
theoretical point of view,most of the earlierwork had focused on differential inclusions
with staticmaximalmonotone operators,which is very elegantly collected in [9], or see
[50] for a recent overview on this subject. Common techniques used in analyzing such
systems are either based on regularization, or discretization. For the former one, the so-
called Yosida-Moreau approximations provide a single-valued Lipschitz functionwith
a regularization parameter, and as this parameter converges to zero, it is shown that the
corresponding solutions converge to the solution of the original differential inclusion.
The discretization techniques rely on constructing piecewise constant interpolations of
the sequence of points obtained from some discrete systemwith a sampling parameter.
As the sampling parameter converges to zero, the corresponding sequence of solutions
is shown to converge to the actual solution.

To the best of our knowledge, the first attempts for studying inclusion (1) with time-
dependent operators F(t, x), but with the domain of F(t, ·) stationary for each t ≥ 0,
were carried out in [31]. Since then, several works have appeared which tackle dynam-
ical systems with time-dependent multi-valued monotone operators. When F(t, x) is
the subdifferential of a time-dependent, proper, lower semicontinuous, and convex
function ϕt (·), that is, F(t, x) = ∂ϕt (x), then F(t, ·) is a maximal monotone opera-
tor. Such systems, involving time-dependent subdifferentials, have been particularly
studied in [5,29,30,37,43,66] under varying degrees of regularity on the system data.
Imposing further structure on the operator F(t, ·), if we take F(t, x) = ∂ψS(t)(x),
where S : [0,∞) ⇒ R

n is closed and convex-valued mapping and ψ is the indicator
function associated with S(t), then the resulting dynamics have been more commonly
studied under the topic of sweeping processes. Starting from the seminal work of [42],
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the research in this area has grown to study several generalizations of the fundamental
model, see for example, the monographs [2,36,41,60] for an overview, and the articles
[3,4,22,23,28,33,52] for more recent and focused expositions. Besides the cases where
F is expressed as a subdifferential of a convex function, certain classes of evolution
variational inequalities [12,46,63] can also be embedded in the framework of (1).

While all these aforementionedworks can be represented by (1), they also rely on the
particular structure of the set-valued mapping in their problem description for analysis
of existence of solutions. Notable exceptions in the literature, which address directly
the system class (1) are [35,65]. However, the regularity assumptions imposed in
these works restrict the applicability of their results. Consequently, when applications
of these dynamical models are studied, for example in control [10,63], the results that
build on the works of [35,65] suffer similar limitations. Based on these observations,
the motivation to study new set of conditions for existence of solutions to systems
class (1) arises and our aim in this paper is to provide mild (read as mildest possible)
conditions on regularity of system data, which allow us to cover a possibly larger class
of systems.Moreover, we can recover most (if not all) of the results on time-dependent
and static case with our approach.

Our approach builds on using the time-stepping algorithm pioneered in [42], which
was also used for studying existence of solutions for system (1) in [35]. This algorithm
constructs a sequence of solutions, where each element of the sequence is an interpo-
lation of points obtained by applying the proximal operator associated with domain of
the multivalued function appearing in (1). With the help of an academic counterexam-
ple, we show how the assumptions imposed in [35] fail to hold for a dynamical system
described by time-dependent complementarity relations. We study existence of solu-
tions under conditions which overcome such restrictions. The basic idea is to construct
a sequence of solutions. To construct an element of this approximate solution with a
fixed sampling time, we first compute a set of points at sampled time instants by pro-
jecting the value of a certain function on the domain of the set-valued mapping. Using
a novel interpolation technique among these discrete points, we obtain a sequence of
absolutely continuous functions. Using the arguments based on Ascolà-Arzeli theo-
rem, this sequence is shown to converge to an absolutely continuous function, which
is then shown to be the unique solution of the original system.We generalize our result
to the case where the right-hand side of (1) has a single-valued Lipschitz vector field
in addition to the set-valued maximal monotone operator.

Moreover, because of the relaxed nature of assumptions, our results provide a
constructive framework for studying differential equations with complementarity rela-
tions. Such nonsmooth relations form a particular subclass of maximal monotone
operators, and have been useful in modeling systems with piecewise affine charac-
teristics [11,13,18]. Earlier work on complementarity systems has focused on linear
dynamics coupled with static complementarity relations [16,25,26,58]. Lately, it was
shown in [19] that an interconnection of static complementarity relation with ordinary
differential equations yields a differential inclusion with static maximal monotone
operator. However, time-dependence in complementarity relations has not been easy
to treat with existing frameworks. Inspired by the result in [19], we provide condi-
tions under which it is possible to recast the interconnection of an ordinary differential
equation with time-dependent complementarity relation in the form of a differential
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inclusion with time-dependent maximal monotone operator, for which the existence
of solutions is being studied in this article.

The remainder of the article is organized as follows: In Sect. 2, we provide appro-
priate background material from set-valued and functional analysis. In Sect. 3, a
motivating example is provided to show how the current literature on differential
inclusions with maximal monotone operators is inadequate for certain system classes.
The main assumptions and the result is given in Sect. 4, followed by a detailed proof
in Sect. 5. Section 6 deals with extensions of the main existence/uniqueness result
towards non-autonomous case as well as Lipschitzian perturbations. The results are
then studied in the context of linear ordinary differential equations coupled with time-
dependent maximal monotone relations in Sect. 7. Finally, the paper closes with some
concluding remarks in Sect. 8.

2 Preliminaries

In this section, we introduce notational conventions that will be in force throughout
the paper as well as auxiliary results that will be employed later.

2.1 Vectors andmatrices

We denote the set of real numbers by R, nonnegative real numbers by R+, n-vectors
of real numbers by R

n , and n × m real-valued matrices by R
n×m .

To denote the scalar product of two vectors x , y ∈ R
n , we use the notation 〈x, y〉 :=

x�y where x� denotes the transpose of x . The Euclidean norm of a vector x is denoted

by |x | := 〈x, x〉 1
2 . For a subspace ofW of R

n ,W⊥ denotes the orthogonal subspace,
that is {y ∈ R

n : 〈x, y〉 = 0 for all x ∈ W}.
We say that a (not necessarily symmetric) matrix M ∈ R

n×n is positive semi-
definite if x�Mx ≥ 0 for all x ∈ R

n . We sometimes write M ≥ 0 meaning that M
is positive semi-definite. Also, we say that M is positive definite if M > 0 for all
nonzero x ∈ R

n .

2.2 Convex sets and related notions

The distance of a point x to a set S is defined by dist(x, S) = inf{|x − y| : y ∈ S}. If
the set S is closed and convex then for each x ∈ R

n there exists a unique point y ∈ S
such that |x − y| = dist(x, S). Such a point is called the projection of x onto the set
S and will be denoted by proj(x, S).

The Hausdorff distance between two nonempty subsets of R
m , say S1 and S2, is

defined by:

dH(S1, S2) := max

{
sup
z1∈S1

dist(z1, S2), sup
z2∈S2

dist(z2, S1)

}
.
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Since dist(x, S) = dist
(
x, cl(S)

)
for any point x and nonempty set S, the Hausdorff

distance is invariant under closure, that is

dH(S1, S2) = dH
(
cl(S1), cl(S2)

)
.

In addition, if y = proj(x, cl(S2)) for some point x ∈ cl(S1), then we have

|x − y| ≤ sup
z∈S1

dist(z, S2) ≤ dH(S1, S2). (2)

2.3 Set-valuedmappings

Let F : R
m ⇒ R

n be a set-valued mapping, that is F(x) ⊆ R
n for each x ∈ R

m . We
define its domain, image, and graph, respectively, as follows:

dom F = {x : F(x) �= ∅}
im F = {y : there exists x such that y ∈ F(x)}

graph F = {(x, y) : y ∈ F(x)}.

The inverse mapping F−1 : R
n ⇒ R

m is defined by F−1(y) = {x : y ∈ F(x)}.
In what follows we introduce a certain notion of continuity for set-valued mappings

of a real variable. For a more detailed/general treatment we refer to [54, Chp. 4 and
5].

Let N #∞ denote the set of all subsequences of N. For a sequence of sets (S�)�∈N in
R
q , the outer limit is defined as the set

lim sup
�→∞

S� :=
{

ξ

∣∣∣ ∃ N ∈ N #∞ and ξ� ∈ S� ∀ � ∈ N , s.t. ξ�
N→ ξ

}
.

For a given set-valued mapping G : [0, T ] ⇒ R
q for some T > 0, we define

lim sup
t↘t∗

G(t) :=
⋃
t�↘t∗

lim sup
�→∞

G(t�).

It is known from [54, p. 152] that

lim sup
t↘t∗

G(t) =
{

y ∈ R
q

∣∣∣∣∣
∃ (t�, y�)�∈N ⊂ [0, T ] × R

q satisfying y� ∈ G(t�),

t� ≥ t, and lim
�→∞(t�, y�) = (t∗, y)

}
.

We say that G is outer semicontinuous from right at t∗ ∈ [0, T ] if

lim sup
t↘t∗

G(t) ⊆ G(t∗).

In case G is outer semicontinuous from right at every t∗ ∈ [0, T ], we say that G is
outer semicontinuous from right on [0, T ].
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2.4 Maximal monotone operators

Throughout the paper, we are interested in maximal monotone set-valued mappings.
A set valued-mapping F : R

n ⇒ R
n is said to be monotone if

〈x1 − x2, y1 − y2〉 ≥ 0

for all (xi , yi ) ∈ graph(F). It is said to be maximal monotone if no enlargement of
its graph is possible in R

n × R
n without destroying monotonicity. We refer to [9] and

[54] for detailed treatment of maximal monotone mappings.
If F is maximal monotone, then it is closed and convex-valued, that is, F(x) is a

closed convex set for all x ∈ dom(F). This enables us to define the minimal section
of a maximal monotone mapping F by

F0(x) := proj(0, F(x))

for x ∈ dom(F). Clearly, F0(x) is the least-norm element of the closed convex set
F(x), that is |F0(x)| ≤ |y| for all y ∈ F(x).

The resolvent Jλ and Yosida approximation Yλ of F are defined by

Jλ := (I + λF)−1 and Yλ := 1

λ
(I − Jλ)

for λ > 0 where I denotes the identity operator.
The following proposition collects some well-known facts (see e.g. [9]) that will

be employed in the sequel.

Proposition 1 Suppose that F : R
n ⇒ R

n is amaximalmonotone set-valuedmapping.
Then, the following statements hold for all λ > 0:

(i) dom Jλ = R
n.

(ii) Jλ is single-valued and non-expansive, that is |Jλ(x1) − Jλ(x2)| ≤ |x1 − x2| for
all x1, x2 ∈ R

n.
(iii) limλ→0 Jλ(x) = x for all x ∈ dom(F).
(iv) Yλ is maximal monotone and λ−1−Lipschitzian.
(v) Yλ(x) ∈ F

(
Jλ(x)

)
for all x ∈ R

n.
(vi) For all x ∈ dom F, |Yλ(x)| is nonincreasing in λ, limλ→0 |Yλ(x)| = |F0(x)|, and

|Yλ(x)| ≤ |F0(x)|.
Given twomaximal monotone mappings, the pseudo-distance between them, intro-

duced in [65], is defined as follows:

Definition 2 The pseudo-distance between two maximal monotone mappings F1 and
F2 is defined by

dis(F1, F2) := sup
x1 ∈ dom(F1), y1 ∈ F1(x1)
x2 ∈ dom(F2), y2 ∈ F2(x2)

〈y1 − y2, x2 − x1〉
1 + |y1| + |y2| .
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The following lemma relates the Hausdorff distance between the domains of two
maximal monotone operators with their pseudo-distance.

Lemma 3 ([65]) For any pair of maximal monotone mappings F1 and F2, it holds that

dH(dom(F1), dom(F2)) ≤ dis(F1, F2).

Based on the pseduo-distance defined in Definition 2, one can introduce a notion
of continuity for time-dependent maximal monotone operators as follows.

Definition 4 (Absolute continuity, [65]). Let F : [0, T ] × R
n ⇒ R

n be a time-
dependent set-valued mapping such that F(t, ·) is maximal monotone for each
t ∈ [0, T ]. We say that t �→ F(t, ·) is absolutely continuous on [0, T ] if there
exists a nondecreasing absolutely continuous function ϕ : [0, T ] → R such that

dis
(
F(t, ·), F(s, ·)) ≤ ϕ(t) − ϕ(s) ∀ s, t with 0 ≤ s ≤ t ≤ T .

2.5 Function spaces

The set of absolutely continuous, integrable, and square integrable functions defined
from the interval [t1, t2] with t1 < t2 to R

n are denoted, respectively, by
AC([t1, t2], R

n), L1([t1, t2], R
n), and L2([t1, t2], R

n). Unless specified otherwise, we
use the term almost everywhere with respect to Lebesgue measure, that is, a property
holds almost everywhere on a set X ⊂ R

n , if it holds on every subset of X with
nonzero Lebesgue measure.

Convergence of family of functions will play an important role in the sequel. For the
sake of completeness, we state the well-known (see e.g. [56]) Arzelá-Ascoli theorem
for which we need some nomenclature.

Consider a collection F of functions f : [0, T ] → R
n . We say that F is equicon-

tinuous if for every ε > 0, there exists a δ > 0 such that | f (t) − f (s)| < ε for every
f ∈ F and each s, t satisfying |t − s| < δ. We say that F is pointwise bounded if for
every t ∈ [0, T ], there exists an Mt < ∞ such that | f (t)| ≤ Mt for every f ∈ F .

Theorem 5 (Arzelá-Ascoli). Suppose that F is pointwise bounded equicontinuous
collection of functions f : [0, T ] → R

n. Every sequence { fn} inF has a subsequence
that converges uniformly on every compact subset of [0, T ].

The following elementary results will be used later.

Lemma 6 Let x : [0, T ] → R
n be a function and t∗ ∈ (0, T ] be such that ẋ(t∗) exists.

Suppose that {tk} and {τk} are two sequences such that 0 ≤ tk ≤ t∗ ≤ τk ≤ T and
tk < τk for all k and limk↑∞ tk = limk↑∞ τk = t∗. Then, the sequence x(τk )−x(tk)

τk−tk
convergences to ẋ(t∗) on a subsequence.

Proof Observe that

x(τk) − x(tk)

τk − tk
= x(τk) − x(t∗)

τk − t∗
τk − t∗

τk − tk
+ x(t∗) − x(tk)

t∗ − tk

t∗ − tk
τk − tk

.
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Since 0 ≤ τk−t∗
τk−tk

≤ 1 and 0 ≤ t∗−tk
τk−tk

≤ 1, both must converge on a (common)
subsequence. The rest follows from the hypothesis that ẋ(t∗) exists. ��
Lemma 7 Suppose that a sequence of functions (y�)�∈N weakly converges to y in
L2(dψ, [0, T ], R), for some ψ ∈ AC([0, T ], R). Let (x�)�∈N be a sequence of abso-
lutely continuous functions such that it converges uniformly to x ∈ AC([0, T ], R

n),
and ẋ�(t) = ψ̇(t)y�(t), for each t ∈ Γ := {

t ∈ [0, T ] | x�, x and ψ are differentiable
at t

}
. Then, it holds that ẋ(t) = ψ̇(t)y(t) for almost every t ∈ Γ .

Proof Define the function ξ : [0, T ] → R
n by

ξ(t) = x(0) +
∫ t

0
y(s)ψ̇(s) ds (3)

for t ∈ [0, T ]. For every η ∈ R
n , we have

〈η, x�(t)〉 = 〈η, x0〉 +
∫ t

0
〈η, y�(s)〉 ψ̇(s) ds

for all � ∈ N and

〈η, ξ(t)〉 = 〈η, x0〉 +
∫ t

0
〈η, y(s)〉 ψ̇(s) ds.

Since (y�)�∈N weakly converges to y, we have that
( 〈η, x�(t)〉

)
�∈N converges to

〈η, ξ(t)〉 for every t ∈ [0, T ] and every η ∈ R
n . This means that

(
x�(t)

)
�∈N converges

to ξ(t) for every t ∈ [0, T ]. Hence, we see that ξ(t) = x(t) for all t ∈ [0, T ] since(
x�

)
�∈N uniformly converges to x . Therefore, (3) yields

x(t) = x0 +
∫ t

0
y(s)ψ̇(s) ds.

In other words,

ẋ(t) = ψ̇(t)y(t)

for almost every t ∈ Γ . ��
For the next two statements,we recall that twomeasures are absolutely continuously

equivalent if each one is absolutely continuous with respect to the other one.

Lemma 8 Let f� : [0, T ] → R be a sequence of functions with � ∈ N such that
| f�(t)| ≤ 1 for all � ∈ N and t ∈ [0, T ]. Suppose that the sequence ( f�)�∈N weakly
converges to f in L2(dμ, [0, T ], R) where dμ is absolutely continuously equivalent
to Lebesgue measure. Then,

f (t) ∈ [lim inf
�→∞ f�(t), lim sup

�→∞
f�(t)]
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for almost all t ∈ [0, T ].
Proof Let k ≥ 1 and define gk� (t) := supq≥k fq(t)− f�+k(t). Note that (gk� )�∈Nweakly
converges in L2(dμ, [0, T ], R) to gk given by gk(t) := supq≥k fq(t) − f (t). Since

gk� is nonnegative for all � ∈ N and t ∈ [0, T ], gk must be nonnegative for almost
all t ∈ [0, T ]. This means that f (t) ≤ supq≥k fq(t) for almost all t ∈ [0, T ]. Hence,
f (t) ≤ lim sup�→∞ f�(t) for almost all t ∈ [0, T ]. Applying the same arguments
to the sequence (− f�)�∈N, we can obtain f (t) ≥ lim inf�→∞ f�(t) for almost all
t ∈ [0, T ]. ��
Lemma 9 Let y� : [0, T ] → R

q be a sequence of functions with � ∈ N such that
|y�(t)| ≤ 1 for all � ∈ N and t ∈ [0, T ]. Also let

(
S�(t)

)
�∈N be a sequence of

sets in R
q with � ∈ N and t ∈ [0, T ] such that y�(t) ∈ S�(t) for all � ∈ N and

t ∈ [0, T ]. Suppose that (y�)�∈N weakly converges to y in L2(dμ, [0, T ], R
q) where

dμ is absolutely continuously equivalent to Lebesgue measure. Then,

y(t) ∈ cl
(
conv

(
lim sup
�→∞

S�(t)
))

for almost all t ∈ [0, T ].

Proof Let S(t) = cl
(
conv

(
lim sup�→∞ S�(t)

))
for t ∈ [0, T ]. It follows from [54,

Cor. 4.11] that S(t) �= ∅ for each t ∈ [0, T ]. Let Γ = {t ∈ [0, T ] : y(t) /∈ S(t)}.
Define the function z : [0, T ] → R by

z(t) = proj
(
y(t), S(t)

)
for all t ∈ Γ and z(t) = 0 for all t ∈ [0, T ]\Γ . Note that |y(t)−z(t)| > 0 for all t ∈ Γ .
Also, we have z ∈ L∞([0, T ], R

n) since S(t) contains an element in the unit ball of
R
n for all t ∈ [0, T ]. Now, define functions a : [0, T ] → R

n and b : [0, T ] → R by

a(t) = y(t) − z(t)

|y(t) − z(t)| and b(t) =
〈
y(t) − z(t)

|y(t) − z(t)| ,
y(t) + z(t)

2

〉

for all t ∈ Γ and a(t) = 0, b(t) = 0 for all t ∈ [0, T ]\Γ . For all t ∈ Γ , the hyperplane
Ht = {η : 〈a(t), η〉 = b(t)} strictly separates the set S(t) and the point y(t), that is

〈a(t), y(t)〉 < b(t) < 〈a(t), z〉 (4)

for all z ∈ S(t) (see e.g. [8, Prop. 1.5.3]). Note that a ∈ L∞([0, T ], R
n), and since y ∈

L2(dμ, [0, T ], R
n) and z ∈ L∞([0, T ], R

n), it follows that b ∈ L2(dμ, [0, T ], R).
Therefore, the function t �→ 〈a(t), w(t)〉 belongs to L2(dμ, [0, T ], R) for every w ∈
L2(dμ, [0, T ], R

n). For each � ∈ N, define ζ� : [0, T ] → Rwith ζ�(t) = 〈a(t), y�(t)〉
for all t ∈ Γ and ζ�(t) = 0 for all t ∈ [0, T ]\Γ . Then, we see that (ζ�)�∈N weakly
converges to ζ given by ζ(t) = 〈a(t), y(t)〉 for all t ∈ Γ and ζ(t) = 0 for all
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t ∈ [0, T ]\Γ . From Lemma 8, we see that

ζ(t) ∈ [lim inf
�→∞ ζ�(t), lim sup

�→∞
ζ�(t)] (5)

for almost all t ∈ [0, T ]. Since limit inferior (superior) can be obtained as the limit of
a subsequence, (5) implies that for almost all t ∈ Γ

〈a(t), y(t)〉 ∈ [〈a(t)y(t)〉, 〈a(t), y(t)〉]

where y(t) and y(t) belong to S(t). Together with the second inequality in (4), this
yields

〈a(t), y(t)〉 > b(t)

for almost all t ∈ Γ . In view of the first inequality in (4), this means that Γ is a zero
measure set. As such, we can conclude that

y(t) ∈ S(t)

for almost all t ∈ [0, T ]. ��

3 Differential inclusions withmaximal monotonemappings

Our goal is to study the existence of solutions to the differential inclusion

ẋ(t) ∈ −F
(
t, x(t)

)
, x(0) = x0, t ∈ [0, T ], (6)

where F(t, ·) : R
n ⇒ R

n is maximal monotone for all t ∈ [0, T ]. We say that
x ∈ AC([0, T ], R

n) is a solution of (6) if x(t) ∈ dom F(t, ·) and x satisfies (6) for
almost all t ∈ [0, T ].

3.1 Related frameworks and their limitations

Historically, the evolution inclusions given in (6) have been a subject of research in
mathematical community in different eras. However, the solutions to such equations
have been proposed under rather strict conditions. Here, we provide a brief of list of
the main results that exist concerning the existence and uniqueness of solutions for
such systems.We also refer the reader to [27, Chapter II] for an overview of the special
case when F(t, ·) is the subdifferential of a convex function.

Single-valued operators with fixed domain [31]: The earliest results on solutions
of dynamical systems (6) with time-dependent maximal monotone relations were
proposed in [31]. The author focused on the case where F(t, ·) : R

n → R
n is single-

valued and F(·, x) is Lipschitz continuous, uniformly in x . The major restriction
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imposed here is that

dom F(t, ·) = dom F(0, ·), ∀ t ≥ 0. (7)

Under these conditions, there exists a Lipschitz continuous x : R+ → R
n such that

(6) holds for Lebesgue almost every t ≥ 0, and x(t) ∈ dom F(t, ·) for each t ≥ 0.

Static maximal monotone operators (à la Brézis) with additive inputs [9]: In the clas-
sical book [9] dealing with differential inclusions with maximal monotone operators,
we can find results dealing with inclusions of the form

ẋ(t) ∈ −F(t, x) = −A
(
x(t)

)+ γ x(t) − u(t)

where A is maximal monotone, γ > 0 is a scalar, and u : [0,∞) → R
n is absolutely

continuous. For such systems dom F(t, ·) = dom A for each t ≥ 0, that is, the domain
of the multivalued operator is independent of time.

Dissipative operators [49]: Building up on the work of Kato [31] and Brézis [9], we
find results on evolution equations built on convergence of certain discrete approx-
imations in [49]. When the results appearing in this line of work are applied to the
maximal monotone case given in (6), it turns out that such results also require the
strong assumption (7), where the domain of the operator does not change with time
[49, Chap. 1, Sec. 4].

Moreau’s sweeping process [42]: The first real contribution in the literature with time-
dependent domains is observed in the seminal work of [42]. The systems studied here
within the umbrella of sweeping processes comprise differential inclusions with a
special conic structure. We introduce a set-valued mapping S : R+ ⇒ R

n , and let
NS(t)(x) denote the normal cone to the set S(t) at a point x ∈ S(t). The proposed
system class is then described as:

ẋ ∈ −F(t, x) := −NS(t)(x), x(0) ∈ S(0). (8)

Thus, for each t and x , F(t, x) is a closed convex cone described by the subdifferential
of the indicator function of S(t), and hence F(t, ·) is maximal monotone. Here, we
see that dom(F(t, ·)) = S(t) and since S is time-dependent, the domain is allowed to
vary with time. To describe the regularity imposed on F(·, x) with respect to time, we
consider the Hausdorff distance, and in the simplest instances, it is assumed that, for
every t1, t2 ≥ 0

dH
(
dom F(t1, ·), dom F(t2, ·)

) = dH
(
S(t1), S(t2)

) ≤ L|t1 − t2|,

that is the Hausdorff distance between the domains of F(t, ·) is bounded by a Lipschitz
continuous function of time. Under these assumptions, there exists a unique solution
to (8) which is Lipschitz continuous. Different variants of this framework were then
derived depending on how the Hausdorff distance varies with time, or whether we can
relax the convexity assumption on S(t) while preserving some nice properties of the
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subdifferential of the indicator function for that set. In short, sweeping processes pro-
vide the first instance in the literature on inclusions with a particular kind of maximal
monotone operators which depend on time, and the corresponding domain may vary.

Maximal monotone operators with time-dependent domain [35,65]: As a generaliza-
tion of the sweeping process, Vladimirov [65] studied evolution inclusions where
time-dependent domains were considered, with the hypothesis that the set-valued
mapping F(t, ·) is just maximal monotone for each t ≥ 0, without any further struc-
tural or geometrical assumption. However, a very strong regularity assumption was
imposed with respect to the pseudo-distance given in Definition 2. In particular, the
mapping F(t, ·) is required to be uniformly continuous, that is, there exists a sequence
of piecewise constant operators Fi : [0, T ] × R

n ⇒ R
n such that for each t ∈ [0, T ]

lim
i→∞ dis

(
Fi (t, ·), F(t, ·)) = 0.

Kunze and Monteiro-Marques [35] then generalized this line of work to consider
systems where the regularity with respect to time can be relaxed, so that the pseudo-
distance between F(t1, ·) and F(t2, ·) is bounded by |μ(t1) − μ(t2)| for some
function of bounded variation μ : [0, T ] → R. Certain results developed in the
context of sweeping processes are thus covered within this framework. The work
started by Vladimirov, and later generalized to some extent by Kunze and Monteiro-
Marques, indeed is an attempt to deal with differential inclusions with most general
time-dependent maximal monotone operators. However, they impose very strong
assumptions in deriving their results which make their applicability somewhat restric-
tive. Indeed, as we show in the next section, strong continuity assumption is not
necessary.

3.2 Motivation

A primary motivation for looking at inclusions of type (6) comes from differential
equations where certain variables are related by a maximal monotone operator. In
particular, consider systems described by

ẋ(t) = Ax(t) + Bz(t)

w(t) = Cx(t) + Dz(t) + v(t)

w(t) ∈ M(− z(t)
)

where x ∈ R
n , (z, w) ∈ R

m×R
m ,v ∈ R

m , thematrices (A, B,C, D)have appropriate
dimensions and M : R

m ⇒ R
m is a maximal monotone operator.

Systems of the form (9) can be alternatively described by (6) where

F(t, x) := −Ax + B(M + D)−1(Cx + v(t)
)
. (10)

By invoking [19, Theorem 2], one can show that F(t, ·) is maximal monotone for each
t ∈ R+ under certain assumptions. Regularity with respect to time is critical here.
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In the works of [35,65], existence and uniqueness of solutions to (6) is established
under the assumption of absolute continuity in the sense of Definition 4. However, the
mapping t �→ F(t, ·) defined by (10) does not, in general, enjoy absolute continuity
with respect to pseudo-distance even if v is absolutely continuous. This is seen in the
following example.

Example 10 Consider a system of the form (9) where n = 1, m = 2,

A = 0, B = C� = [
0 1

]
, D =

[
0 1

−1 0

]
,

and M : R
2 ⇒ R

2 is the set-valued mapping given by M(ζ ) = {η : η ≥ 0, ζ ≤
0, and 〈η, ζ 〉 = 0}. By invoking [19, Theorem 2], it can be verified that the cor-
responding set-valued mapping F(t, ·) as defined in (10) is maximal monotone for
each t . Let v : [0, T ] → R

2 be an absolutely continuous function such that for some
t1, t2 ∈ [0, T ], we have

v(t1) =
[
0
0

]
and v(t2) =

[−1
0

]
.

Let Fi := F(ti , ·) with i = 1, 2. It can be verified that

0 ∈ F1(ρ + 1) and 1 ∈ F2(0)

for any ρ ≥ 0. From Definition 2, we get

dis(F1, F2) = sup
x ∈ dom(F1), y ∈ F1(x),

ξ ∈ dom(F2), ζ ∈ F2(ξ)

〈ζ − y, x − ξ 〉
1 + |y| + |ζ | ≥ ρ + 1

2
.

Since the righthand side is not bounded, we can conclude that set-valued mapping
F(t, ·) is not absolutely continuous in the sense of Definition 4. However, existence
and uniqueness of solutions for this example would follow from our main results.
Indeed, this example satisfies the hypothesis of Theorem 26.

4 Main results

The main goal of this paper is to investigate conditions (weaker than those of [35,65])
that guarantee existence of solutions to (6). The uniqueness of solutions for a fixed
initial condition follows easily from the maximal monotone property of the right-hand
side of (6).
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4.1 Existence and uniqueness of solutions to (6)

To state the main result of our paper, we introduce the following assumptions, where
T > 0 and B

n(r) := {x ∈ R
n : |x | ≤ r}.

(A1) For each t ∈ [0, T ], the operator F(t, ·) is maximal monotone.
(A2) The set-valued mapping t �→ graph F(t, ·) is outer semicontinuous from right

on [0, T ].
(A3) There exists a nondecreasing function ϕ ∈ AC([0, T ], R) such that

sup
z∈dom F(s,·)

dist
(
z, dom F(t, ·)) ≤ ϕ(t) − ϕ(s), ∀s, t with 0 ≤ s ≤ t ≤ T .

(LG) There exists σ ∈ L1([0, T ], R+) such that

|F0(t, x)| ≤ σ(t)(1 + |x |)

for all x ∈ dom F(t, ·) with t ∈ [0, T ].
(YB) There exist a nondecreasing function θ : [0, T ] → R, and a scalar Λ > 0,

such that for every 0 < λ < Λ,

|Yλ(s + λ, x)| ≤ θ(s + λ) − θ(s) + |F0(s, x)|

for all s with 0 ≤ s ≤ T − λ, and x ∈ dom F(s, ·) where Yλ(t, ·) denotes the
Yosida approximation of F(t, ·).

The result on existence and uniqueness of solutions now follows.

Theorem 11 Consider the system (6) and assume that (A1)–(A3) hold. If the linear
growth assumption (LG) holds, then there exists a unique solution of (6) for every
x0 ∈ cl

(
dom F(0, ·)). In case the Yosida approximation bound assumption (YB)

holds, then there exists a unique solution of (6) for every x0 ∈ dom F(0, ·).

Remark 12 The statement (YB) in the description of Theorem 11 can be checked
without the explicit knowledge of the least norm element |F0(s, x)| for each s ≥ 0.
In particular, consider the following statement:

(YB’) There exist a nondecreasing function θ : [0, T ] → R, and Λ > 0, such that
for every 0 < λ < Λ,

|Yλ(s + λ, x)| ≤ θ(s + λ) − θ(s) + |Yλ(s, x)|

for all s with 0 ≤ s ≤ T − λ, and x ∈ dom F(s, ·).
Then, because of Proposition 1, item (vi), (YB’) implies (YB).
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Remark 13 If we consider the static maximal monotone operator F : R
n ⇒ R

n ,
and the differential inclusion ẋ ∈ −F(x), then the classical result on existence of
solutions of suchdifferential inclusions, such as [9,Theorem3.1], followsdirectly from
Theorem 11. In that case, conditions (A2) and (A3)hold trivially, because the operator
is time-independent and one can check that (YB) holds with a constant function θ ,
because of Proposition 1, item (vi).

4.2 Relevance of Theorem 11

In what follows we will show how the results of [35] as well as the results on sweeping
processes can be recovered from Theorem 11.

4.2.1 Recovering the results of [35]

As recalled in Sect. 3.1, the results in [35] imposed continuity with respect to the
pseudo-distance introduced in Definition 2. We claim that if the mapping t �→
F(t, ·) : R

n ⇒ R
n is absolutely continuous on [0, T ] then the set-valued map-

ping t �→ graph F(t, ·) is outer semicontinuous from right on [0, T ]. To see this, let
(t�, x�, y�)�∈N ⊆ [0, T ] × R

n × R
n be a sequence such that y� ∈ F(t�, x�), t� ≥ t ,

and lim�↑∞(t�, x�, y�) = (t, x, y) for some t ∈ [0, T ], x, y ∈ R
n . What needs to be

proven is that y ∈ F(t, x). To see this, let (η, ζ ) ∈ R
n+n be such that ζ ∈ F(t, η).

From absolute continuity of t �→ F(t, ·), we have

〈ζ − y�, x� − η〉 ≤ (
r(t) − r(t�)

)(
1 + |ζ | + |y�|

)
.

By letting � tend to infinity, we obtain

〈ζ − y, x − η〉 ≤ 0

since r is continuous. This means that y ∈ F(t, x) as F(t, ·) is maximal monotone.
Another hypothesis required by the results of [35] is a linear growth condition that
coincides with (LG).

4.2.2 Inclusions with subdifferentials of convex functions

Another closely related class of dynamical systems appearing in the literature is given
by

ẋ ∈ −∂g(t, x), x(0) = x0 ∈ dom ∂g(0, ·), (11)

where g(t, ·) : R
n → R ∪ {∞} is a convex, lower semicontinuous, and proper for

each t ≥ 0, and ∂g(t, ·) denotes its subdifferential.
Corollary 14 Consider the differential inclusion (11), and assume that the following
hold:
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– There exists a nondecreasing function ϕ ∈ AC([0, T ], R) such that

sup
z∈dom ∂g(s,·)

dist
(
z, dom ∂g(t, ·)) ≤ ϕ(t) − ϕ(s), ∀s, t with 0 ≤ s ≤ t ≤ T .

– There exist a nondecreasing function θ : [0, T ] → R, and a scalar Λ > 0, such
that for every 0 < λ < Λ,

|∇gλ(s + λ, x)| ≤ θ(s + λ) − θ(s) + |∇gλ(s, x)|

for all s with 0 ≤ s ≤ T − λ, and x ∈ dom ∂g(s, ·), where gλ(t, ·) denotes the
continuously differentiable Yosida approximation of g(t, ·), defined as

gλ(t, x) = inf
y∈Rn

{
g(t, y) + 1

2λ
‖y − x‖2

}
.

Then, the differential inclusion (11) admits a unique solution.

The corollary, stated above, is a direct consequence of Theorem 11. Under the
assumptions on g(t, ·), (A1) holds. Moreover, Yosida approximation of the operator
∂g can be expressed directly in terms of the Yosida approximation of the function
g itself. We also have the following result which ensures that, in such cases, (A3)
implies (A2).

Lemma 15 If, for each t ≥ 0, F(t, ·) = ∂g(t, ·) for some g(t, ·) convex, lower semi-
continuous and proper. Then, (A3) implies (A2).

Proof Let (t�, x�, y�)�∈N ⊆ [0, T ]× R
n × R

n be a sequence such that y� ∈ ∂g(t�, x�)

and moreover, lim�↑∞(t�, x�, y�) = (t, x, y), t� ≥ t , for some t ∈ [0, T ], x, y ∈ R
n .

We now show that y ∈ ∂g(t, x). For that, let (η, ζ ) ∈ R
n+n be such that ζ ∈ ∂g(t, η),

and let x�
�,η := argminz∈dom ∂g(t�,·) |z − η|. Note that, dom ∂g(t, ·) is closed, convex

and nonempty for each t ≥ 0, and hence x�
�,η is unique, and because of (A3), x

�
�,η → η

as � → ∞. We, therefore, have

〈y�, η − x�〉 =
〈
y�, η − x�

�,η

〉
+
〈
y�, x

�
�,η − x�

〉
≤ g(t�, x

�
�,η) − g(t�, x�) +

〈
y�, η − x�

�,η

〉
≤ g(t�, x

�
�,η) − g(t�, x�) + |y�| dist(η, dom ∂g(t�, ·))

≤ g(t�, x
�
�,η) − g(t�, x�) + |y�| dist(dom ∂g(t, ·), dom ∂g(t�, ·))

≤ g(t�, x
�
�,η) − g(t�, x�) + |y�| (ϕ(t�) − ϕ(t)).

By letting � tend to infinity, and invoking (A3), we obtain

〈y, η − x〉 ≤ g(t, η) − g(t, x)

which implies y ∈ ∂g(t, x), and hence assumption (A2) holds. ��
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Example 1 As an illustration of Corollary 14, consider the function g : R+×R → R+,
defined by, g(t, x) = t |x |. The first item holds since the domain of ∂g does not change
with time. To check the second condition, Yosida approximation of the function g(t, ·),
for each t ≥ 0, is described by:

gλ(t, x) =
{

1
2λ |x |2 if |x | ≤ tλ

t |x | − λt2
2 if |x | > tλ

.

As a result, Yosida approximation of the operator ∂g(t, ·), for each t ≥ 0, is given by:

∂gλ(t, x) =
{

1
λ
x if |x | ≤ tλ

t sign(x) if |x | > tλ

and hence it follows that for each t ≥ s ≥ 0, and each x ∈ R, we have

|∂gλ(t, x)| − |∂gλ(s, x)| ≤ t − s

and hence (YB’) holds with linear function θ(s) = s.

4.2.3 Recovering the special case of sweeping processes

Sweeping process is a special case of (6), where F(t, x) = NS(t)(x), with S : [0, T ] ⇒
R
n being a closed convex-valued mapping. The normal cone operator is by definition

maximal monotone for each t ∈ [0, T ]. Moreover, in this particular case, assump-
tion (LG) is trivially satisfied sinceNS(t)(x) is a cone and thus 0 ∈ NS(t)(x), for each
t ∈ [0, T ] and x ∈ dom NS(t)(·) = S(t). Assumption (A3) can be written directly in
terms of the set-valued mapping S as follows: There exists a nondecreasing function
ϕ ∈ AC([0, T ], R) such that

dist(S(s), S(t)) := sup
z∈S(s)

dist(z, S(t)) ≤ ϕ(t) − ϕ(s), ∀s, t with 0 ≤ s ≤ t ≤ T .

The aforementioned condition is equivalent to saying that the retraction of the
set-valued mapping S(·) is absolutely continuous, and it was first proposed in
[42] for existence of solutions to first order sweeping processes. One can invoke
Lemma 15 to check that assumption (A3) implies (A2). Indeed, by taking g(t, x) ={
0 if x ∈ S(t),

+∞ if x /∈ S(t)
, and observing that NS(t)(·) = ∂g(t, ·).

Remark 16 In Sects. 4.2.2 and 4.2.3, we considered a specific class of systems where
themaximalmonotoneoperator is definedby the subdifferential of the convex function.
In the literature, we also find other results for differential inclusions with subdiffer-
entials of time-dependent convex functions, see for example [27,34,47, Page 197],
and [64]. In some of these works, conditions are stated in terms of the function g(·, ·)
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itself, whereas we work with assumptions that result in the bounds on the correspond-
ing Yosida approximations of the subdifferentials. Some results from [34] can be used
to write the conditions in terms of the function g(·, ·) itself, but in general, it is not clear
how our conditions on the subdifferential operator can be translated to the conditions
on the function g(·, ·).

5 Proof of Theorem 11

We are basically concerned with the existence of the solution in this proof, as the
uniqueness readily follows from assumption (A1). The proof of existence is based
on constructing a sequence of approximate solutions and showing that this sequence
converges to a function which satisfies the differential inclusion (6). This is formally
done in following main steps:

– Discretizing (6)
– Obtaining bounds on discrete values
– Construction of a sequence of approximate solutions
– Studying the limit of the sequence.

Each of these steps is carried out as a subsection in the sequel, and it is shown that the
limit we thus obtain is indeed a solution to (6).

5.1 Discretization of (6)

We first begin with discretizing (6). Let

Δ = {t0, t1, . . . , tK : 0 = t0 < t1 < · · · < tk < tk+1 < · · · < tK = T }

be a partition of the interval [0, T ]. Define

0 < hk := tk − tk−1

for k ∈ {1, 2, . . . , K }. Note that∑K
k=1 hk = T . We define the size of the partition Δ

by K (Δ) and the granularity by |Δ| = maxk∈{1,2,...,K } hk . For simplicity, we write
K = K (Δ) when Δ is clear from the context.

Next, consider the discretization of (6) based on the partition Δ given by

xk+1 − xk
hk+1

∈ −F(tk+1, xk+1) (12)

for k ∈ {0, 1, . . . , K − 1}. Alternatively, we have

xk+1 = (
I + hk+1F(tk+1, ·)

)−1
(xk). (13)

This resolvent based alternative form, together with assumption (A1) and Proposi-
tion 1, guarantees that the discretization (12) is well-defined in the sense that there
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exist x0, x1, . . . , xK satisfying (12) (and hence (13)). If dom(F(t, ·)) is closed for
each t ≥ 0, then it follows from (13) that xk+1 is a projection of xk on the set
dom(F(tk+1, ·)); Put simply, in case the domain of the multivalued function F(t, ·)
is closed, the sequence of points xk is obtained by applying the proximal operator
associated with the mapping hk F(tk, ·), as defined in [48,53]. We will use a certain
interpolation between the points xk to get an approximate solution for the differential
inclusion (6).

5.2 Bounds on xk values

We aim at establishing bounds on xk that are independent of the underlying partition
Δ. The bounds obtained under the condition (LG) and (YB)are different and appear
in Lemmas 17 and 18, respectively. We prefer using the same notation for the bounds
of our interest in these lemmas, and when we use these bounds later on, the reference
to these bounds will be clear from the context.

Lemma 17 Under assumption (LG), there exists a sequence of partitions {Δ�} with
|Δ�| → 0, such that for each of these partitions, we have

|xk | ≤ β (14)

|xk − xk−1| ≤ ψ(tk) − ψ(tk−1) (15)

for each k ∈ {1, 2, . . . , K }; the constant β ≥ 0, and the function ψ : [0, T ] → R+
are defined as

β = α + ϕ(T ) − ϕ(0) + (1 + α)

∫ T

0
σ(s) ds (16)

ψ(t) := t + 2ϕ(t) + (1 + γ )

∫ t

0
σ(s) ds ∀ t ∈ [0, T ], (17)

with ϕ satisfy (A3), σ satisfying (LG), and

α = |x0| + ϕ(T ) − ϕ(0) (18)

γ = β + ϕ(T ) − ϕ(0). (19)

Proof To obtain the bounds given in (14) and (15), we start by analyzing the sequence
(13) for a fixed partition and introduce some simplified notation for the corresponding
operators:

Fk := F(tk, ·), Jk := (
I + hk Fk

)−1
, and Yk := 1

hk
(I − Jk). (20)

It then follows from (13) that

xk+1 ∈ dom Fk+1

xk+1 = Jk+1(xk) (21)
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for all k ∈ {0, 1, . . . , K −1}, where we recall that K is the size of the chosen partition.
To establish (14), we first introduce auxiliary points x̄k given by x̄0 = x0 and

x̄k+1 := proj
(
x̄k, cl(dom Fk+1)

)
for k ∈ {0, 1, . . . , K − 1}. Clearly, we have

x̄k ∈ cl(dom Fk) (22)

for all k ∈ {0, 1, . . . , K }. Then, it follows from assumption (A3) and (2) that

|x̄k − x̄k−1| ≤ ϕ(tk) − ϕ(tk−1) (23)

for all k ∈ {1, 2, . . . , K }. We thus obtain, for each k ∈ {1, 2, . . . , K },

|x̄k | ≤ |x̄k−1| + |x̄k − x̄k−1| ≤ |x̄k−1| + ϕ(tk) − ϕ(tk−1) (24a)

≤ |x̄0| + ϕ(tk) − ϕ(t0) (24b)

≤ |x̄0| + ϕ(T ) − ϕ(0) (24c)

where (24b) follows from the repeated application of (24a), and (24c) uses the fact
that ϕ is nondecreasing. An immediate consequence of (24c) is that

|x̄k | ≤ α (25)

for each k ∈ {0, 1, . . . , K } where α satisfies (18).
The bounds given in (14) and (15) are now obtained from assumption (LG). From

(22), we have that, for every ε > 0 and each k ∈ {1, 2, . . . , K }, there exists a point x̄ε
k

satisfying

x̄ε
k ∈ dom Fk

|x̄ε
k − x̄k | ≤ ε, (26)

and therefore

|x̄ε
k | ≤ α + ε (27)

for all k ∈ {0, 1, . . . , K } in view of (25) and the triangle inequality. Next, we introduce
the sequence of points ȳε

k based on x̄ε
k by

ȳε
k := Jk(x̄

ε
k ) (28)

for all k ∈ {0, 1, . . . , K }. Note that
x̄ε
k − ȳε

k

hk
= Yk(x̄

ε
k ).
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Now, it follows from (26) and Proposition 1 that∣∣∣∣ x̄ε
k − ȳε

k

hk

∣∣∣∣ ≤ |F0
k (x̄ε

k )|. (29)

To obtain a bound on the right-hand side of (29), we employ assumption (LG). Take
any partition Δ�, and assume momentarily that σ is a constant function.

By using assumption (LG) and (27), we get

|x̄ε
k − ȳε

k | ≤ hkσ(1 + α + ε) (30)

for all k ∈ {0, 1, . . . , K } and ε > 0. In view of (21) and (28), Proposition 1 implies
that

|xk − ȳε
k | ≤ |xk−1 − x̄ε

k |. (31)

Hence, using (30) and (31), we obtain

|xk − x̄ε
k | ≤ |xk − ȳε

k | + |ȳε
k − x̄ε

k | ≤ |xk−1 − x̄ε
k | + hkσ(1 + α + ε) (32)

for all k ∈ {1, 2, . . . , K } and ε > 0. Letting ε tend to zero in (32) results in

|xk − x̄k | ≤ |xk−1 − x̄k | + hkσ(1 + α)

for all k ∈ {1, 2, . . . , K }. Therefore, we have

|xk − x̄k | ≤ |xk−1 − x̄k | + hkσ(1 + α)

≤ |xk−1 − x̄k−1| + |x̄k−1 − x̄k | + hkσ(1 + α)

(23)≤ |xk−1 − x̄k−1| + ϕ(tk) − ϕ(tk−1) + hkσ(1 + α)

≤ |x0 − x̄0| + ϕ(tk) − ϕ(0) +
(

k∑
�=1

hk

)
σ(1 + α)

≤ ϕ(T ) − ϕ(0) + Tσ(1 + α). (33)

for all k ∈ {1, 2, . . . , K }. Since the constant σ is finite, we can conclude from (25)
and (33) that

|xk | ≤ β (34)

for all k ∈ {1, 2, . . . , K } where β satisfies (16). This establishes (14).
Next, we proceed to establish (15) using the bound in assumption (LG) and (14). To

this end, we continue using the notation introduced in (20), and introduce a sequence
of auxiliary points ξk

ξk := proj
(
xk−1, cl(dom Fk)

)
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for all k ∈ {1, 2, . . . , K }. Clearly, we have

ξk ∈ cl(dom Fk)

for all k ∈ {1, 2, . . . , K }. Therefore, for all ε > 0 there exist points ξε
k satisfying

ξε
k ∈ dom Fk (35a)

|ξε
k − ξk | ≤ ε. (35b)

It follows from (2) and assumption (A3) that

|xk−1 − ξk | ≤ ϕ(tk) − ϕ(tk−1) (36)

for all k ∈ {1, 2, . . . , K }. In view of (34) and the fact that ϕ is nondecreasing, this
means that

|ξk | ≤ β + ϕ(T ) − ϕ(0)

for all k ∈ {1, 2, . . . , K }. As such, we have

|ξε
k | ≤ γ + ε (37)

for all k ∈ {1, 2, . . . , K } where γ satisfies (19). Now, define

ζ ε
k := Jk(ξ

ε
k )

for all k ∈ {1, 2, . . . , K }. Note that

|xk − xk−1| ≤ |xk − ζ ε
k | + |ζ ε

k − ξε
k | + |ξε

k − xk−1|
≤ 2|ξε

k − xk−1| + |ζ ε
k − ξε

k | (38)

where we used the fact that |xk − ζ ε
k | ≤ |xk−1 − ξε

k | due to the resolvent being
nonexpansive. Since ξε

k ∈ dom Fk due to (35a), we can invoke the bound on the least
norm element of F(tk, ξ ε

k ) in assumption (LG) to obtain

ξε
k − ζ ε

k

hk
= Yk(ξ

ε
k ) �⇒ ∣∣ξε

k − ζ ε
k

∣∣ ≤ hk |F0(tk, ξ
ε
k )| (37)≤ hk σ(1 + γ + ε)

for all k ∈ {1, . . . , K } and ε > 0. Together with (35b) and (36), (38) leads to

|xk − xk−1| ≤ 2
(
ϕ(tk) − ϕ(tk−1)

)+ hkσ(1 + γ )

by taking the limit as ε tends to zero. This establishes the bound given in (15) for
constant σ and arbitrary partition.

123



Convergence of proximal solutions for evolution…

To obtain the bounds (14) and (15) for σ locally integrable, and not necessarily
constant, one can invoke [38, Lemma 3.3.1]. To use this result, one must choose the
partitions Δ� carefully, and work with a piecewise constant approximation (in L1-
norm) of the function σ . ��
Lemma 18 Under the assumption (YB), for any partition Δ, with |Δ| < Λ we have

|xk | ≤ β (39)

|xk − xk−1| ≤ ψ(tk) − ψ(tk−1) (40)

for each k ∈ {1, 2, . . . , K }; the constant β ≥ 0, and the function ψ : [0, T ] → R+
are defined as

β := |x0| + αT

ψ(t) := αt, (41)

with α := 2(θ(T ) − θ(0)) + F0(0, x0).

Proof Let x0 ∈ dom F(0, ·). Since xk+1 = Jk+1(xk) ∈ dom Fk+1, we observe that

| xk+1 − xk
hk+1

| = |Yk+1(xk)| ≤ θ(tk+1) − θ(tk) + |F0
k (xk)|. (42)

On the other hand,

Yk+1(xk) ∈ Fk+1(Jk+1(xk))

and hence,

|Yk+1(xk)| ≥ |F0
k+1(xk+1)|.

We therefore have

|F0
k+1(xk+1)| ≤ θ(tk+1) − θ(tk) + |F0

k (xk)|

and, in particular, for each k ∈ N,

|F0
k (xk)| ≤ θ(tk+1) − θ(0) + |F0

0 (x0)|.

Plugging this bound in (42), and using the fact that θ is nondecreasing, we obtain

| xk+1 − xk
hk+1

| ≤ 2(θ(T ) − θ(0)) + |F0
0 (x0)|.

Letting α := 2(θ(T ) − θ(0)) + F0
0 (x0), we get

|xk+1 − xk | ≤ α(tk+1 − tk),
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so that (40) holds with ψ(s) = α s. By repeated application of the trying inequality,
|xk | ≤ |xk−1| + |xk − xk−1|, we get

|xk | ≤ |x0| + αT ,

so that (39) holds with β := |x0| + αT . ��
In subsequent analysis,we refer toβ andψ , either fromLemmas17or 18, depending

upon whether we assume (LG) or (YB).

5.3 Construction of a sequence of approximate solutions

Based on the xk values, we construct a sequence of absolutely continuous (in time)
functions which approximate the actual solution of the system. To this end, note that
the function ψ defined above is strictly increasing and absolutely continuous. Now,
define the piecewise continuous function xΔ as

xΔ(t) := ψ(tk+1) − ψ(t)

ψ(tk+1) − ψ(tk)
xk + ψ(t) − ψ(tk)

ψ(tk+1) − ψ(tk)
xk+1 (43)

where t ∈ [tk, tk+1] and k ∈ {0, 1, . . . , K − 1}. By definition, xΔ is a continuous
function and

xΔ(tk) = xk (44)

for all k ∈ {0, 1, . . . , K }. We will show that

x(t) := lim|Δ|→0
xΔ(t)

is the desired solution to the inclusion (6). An important intermediate step in studying
the convergence of the sequence xΔ is to obtain the following uniform bound.

Lemma 19 Let τ and τ be such that 0 ≤ τ < τ ≤ T . For any partition Δ, it holds
that

|xΔ(τ) − xΔ(τ)| ≤ ψ(τ) − ψ(τ). (45)

Proof From the definition of xΔ (43) for a fixed partition Δ, there exist integers q and
r with q + 1 ≤ r such that tq ≤ τ < tq+1 and tr−1 < τ ≤ tr . If q + 1 = r , then we
have

|xΔ(τ) − xΔ(τ)| ≤ | ψ(τ) − ψ(τ)

ψ(tq+1) − ψ(tq)
(xq+1 − xq)| from (43)

≤ ψ(τ) − ψ(τ)

ψ(tq+1) − ψ(tq)

(
ψ(tq+1) − ψ(tq)

)
from (44)

≤ ψ(τ) − ψ(τ).
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In a similar fashion, if q + 1 < r then we have

|xΔ(τ) − xΔ(τ)| ≤ |xΔ(tr−1) − xΔ(τ)|
+

∑
q+1≤i≤r−2

|xΔ(ti+1) − xΔ(ti )| + |xΔ(τ) − xΔ(tq+1)|

= ψ(τ) − ψ(tr−1)

ψ(tr ) − ψ(tr−1)
|xr − xr−1| +

∑
q+1≤i≤r−2

|xΔ(ti+1) − xΔ(ti )|

+ ψ(tq+1) − ψ(τ)

ψ(tq+1) − ψ(tq )
|xq+1 − xq |

≤ ψ(τ) − ψ(tr−1) +
∑

q+1≤i≤r−2

(
ψ(ti+1) − ψ(ti )

)+ ψ(tq+1) − ψ(τ) = ψ(τ) − ψ(τ).

Hence, (45) is established. ��

5.4 Limit of the sequence

The bounds established in the previous section allow us to study the limiting behaviour
of the sequence (xΔ�

)�∈N.

Lemma 20 Consider a sequence of partitions (Δ�)�∈N with |Δ�| → 0 as � tends to
infinity. The sequence (xΔ�

)�∈N is equicontinuous.

Proof Note first that ψ introduced in (17) (or, (41)) is uniformly continuous on the
compact interval [0, T ] as it is absolutely continuous on the same interval. Therefore,
for any ε > 0 there exists a positive number δ > 0 such that

|ψ(τ) − ψ(τ)| < ε

for all τ , τ ∈ [0, T ] such that |τ − τ | < δ. In view of (45), we have

|xΔ�
(τ ) − xΔ�

(τ )| < ε

for all � ∈ N and τ , τ ∈ [0, T ] such that |τ − τ | < δ. Consequently, the sequence
(xΔ�

)�∈N is equicontinuous. ��
Let (Δ�)�∈N be a sequence of partitions with |Δ�| → 0 as � tends to infinity. Since

the sequence (xΔ�
)�∈N is also uniformly bounded in view of Lemma 17 (as well as

Lemma 18), Theorem5 (Arzelá-Ascoli theorem) implies that it converges uniformly to
a continuous function x on a subsequence, say N ∈ N #∞. We claim that x is absolutely
continuous. To see this, let τ , τ ∈ [0, T ] with τ ≤ τ and note that

|x(τ ) − x(τ )| ≤ |x(τ ) − xΔ�
(τ )| + |xΔ�

(τ ) − xΔ�
(τ )| + |xΔ�

(τ ) − x(τ )|
≤ |x(τ ) − xΔ�

(τ )| + ψ(τ) − ψ(τ) + |xΔ�
(τ ) − x(τ )|

≤ ψ(τ) − ψ(τ) (46)
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where the first inequality follows from the triangle inequality, the second from (45),
and the third by taking the limit on the convergent subsequence N . Thus, absolute
continuity of x follows from absolute continuity of the function ψ .

Now, we want to show that x is a solution of (6), that is

x(t) ∈ dom F(t, ·) and ẋ(t) ∈ −F
(
t, x(t)

)
(47)

for almost all t ∈ [0, T ].
Let Γ ⊆ [0, T ] be defined by Γ = {t ∈ (0, T ) : ψ and x are both

differentiable at t and t /∈ ∪�∈NΔ�}. Since ψ and x are both absolutely continuous
and ∪�∈NΔ� is countable, it is enough to show (47) for almost all t ∈ Γ .

For a partition Δ, define

yΔ(t) = xk+1 − xk
ψ(tk+1) − ψ(tk)

for t ∈ (tk, tk+1) and yΔ(tk) = 0 for tk ∈ Δ.
From (43), we see that

ẋΔ�
(t) = ψ̇(t)

xk+1 − xk
ψ(tk+1) − ψ(tk)

= ψ̇(t)yΔ�
(t)

for all t ∈ Γ .
In view of (43) and Lemma 19, we see that |yΔ�

|L∞ ≤ 1 for all �. Therefore, the
sequence (yΔ�

)�∈N is contained in the closed ball with radius
√

ψ(T ) − ψ(0) of the
Hilbert space L2(dψ, [0, T ], R

n). As such, there exists a subsequence N ′ of N such
that (yΔ�

)�∈N ′ converges to y weakly in L2(dψ, [0, T ], R
n). It then follows from

Lemma 7 that

ẋ(t) = ψ̇(t)y(t) (48)

for almost all t ∈ Γ .
Now, let t∗ ∈ Γ . Then, for every � ∈ N , there must exist k� ∈ {1, 2, . . . , K (Δ�)}

with the property that tk�
< t∗ < tk�+1. Note that lim�↑∞ tk�

= lim�↑∞ tk�+1 = t∗
since |Δ�| converges to zero as � tends to infinity. By construction, we have

(
xtk�+1,−

xtk�+1 − xtk�
tk�+1 − tk�

) ∈ graph F(tk�+1, ·).

Equivalently, we have

(
xΔ�

(tk�+1),−ψ(tk�+1) − ψ(tk�
)

tk�+1 − tk�

yΔ�
(t)
) ∈ graph F(tk�+1, ·). (49)

Let S�(t∗) := − tk�+1−tk�
ψ(tk�+1)−ψ(tk� )

F(tk�+1, xΔ�
(tk�+1)). From (49), we have that

y�(t∗) ∈ S�(t∗). We now invoke Lemma 9 and observe that y(t∗) ∈ cl
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(
conv

(
lim sup�→∞ S�(t∗)

))
. Due to the outer-semicontinuity assumption, we have

lim sup�→∞ F(tk�+1, xΔ�
(tk�+1)) ⊆ F(t∗, x(t∗)). The set F(t∗, x(t∗)) is closed and

convex because of the maximal monotonicity property, and hence

y(t∗) ∈ −1

ψ̇(t∗)
F(t∗, x(t∗)).

Since ψ̇(t∗) ≥ 1, we get

ẋ(t∗) (48)= ψ̇(t∗)y(t∗) ∈ −F(t∗, x(t∗))

for each t∗ ∈ Γ . ��

6 Extensions

In this section, we extend the results of Theorem 11. First, we consider non-
autonomous differential inclusions of the form

ẋ(t) ∈ −F
(
t, x(t)

)+ u(t), x(0) = x0 (50)

where F(t, ·) : R
n ⇒ R

n is maximal monotone for all t ≥ 0 and u ∈ L1([0, T ], R
n).

We begin with the following observation.

Lemma 21 Consider the system (50). Let u ∈ L1([0, T ], R
n) and G be the set-valued

mapping defined by G(t, ξ) := F
(
t, ξ + ∫ t

0 u(τ ) dτ
)
. Then, the differential inclusion

(50) admits a solution x if and only if the differential inclusion

ξ̇ (t) ∈ −G
(
t, ξ(t)

)
, ξ(0) = x0

admits a solution ξ .

Proof For the ‘only if’ part, suppose that x is a solution of (50). Define

ξ(t) = x(t) −
∫ t

0
u(τ ) dτ

for all t ≥ 0. Note that ξ(0) = x0 and

ξ̇ (t) = ẋ(t) − u(t) ∈ −F
(
t, x(t)

) = −F
(
t, ξ(t) +

∫ t

0
u(τ ) dτ

) = −G(t, ξ(t)).

The ‘if’ part follows reversing the arguments. ��
Theorem 22 Consider system (50) and suppose that u ∈ L1([0, T ], R

n) and F(t, ·)
satisfies assumptions (A1), (A2), and (A3). If (LG) holds, then for every x0 ∈
cl
(
dom F(0, ·)), there exists a unique solution x ∈ AC([0, T ], R

n). If (YB) holds,
then for every x0 ∈ dom F(0, ·), there exists a unique solution x ∈ AC([0, T ], R

n).
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Proof In view of Lemma 21 and Theorem 11, it is enough to show that the time-
dependent set-valued map G defined by G(t, x) = F

(
t, x + Φ(t)

)
with Φ(t) =∫ t

0 u(τ ) dτ satisfies assumptions (A1), (A2), (A3), and in addition, G satisfies (LG)
(resp. (YB)) if F satisfies (LG) (resp. (YB)).

(A1): Since maximal monotonicity is preserved under translations (see e.g. [54,
Thm. 12.43]), G satisfies assumption (A1) whenever F satisfies it.

(A2): Note that graphG(t, ·) = graph F(t, ·) − {Φ(t)} × {0}. Since the set-valued
mapping t �→ graph F(t, ·) is outer semicontinuous on [0, T ] by assumption and Φ

is absolutely continuous, t �→ graphG(t, ·) is outer semicontinuous on [0, T ].
(A3): Note that domG(t, ·) = dom F(t, ·)−Φ(t) for all t ∈ [0, T ]. Therefore, we

have

sup
z∈domG(s,·)

dist
(
z, domG(t, ·)) = sup

z+Φ(s)∈dom F(s,·)
dist

(
z + Φ(t), dom F(t, ·))

≤ ϕ(t) − ϕ(s) + |Φ(t) − Φ(s)|

for all s, t with 0 ≤ s ≤ t ≤ T since F satisfies assumption (A3). Note that

ϕ(t) − ϕ(s) + |Φ(t) − Φ(s)| ≤ ϕ̄(t) − ϕ̄(s)

for all s, t with 0 ≤ s ≤ t ≤ T where

ϕ̄(t) := ϕ(t) +
∫ t

0
|u(τ )| dτ . (51)

Therefore, G satisfies assumption (A3).
(LG): Since F satisfies assumption (LG), we observe that

|G0(t, x)| = |F0(t, x + Φ(t)
)| ≤ σ(t)

(
1 + |x + Φ(t)|) (52)

for all x ∈ domG(t, ·) with t ∈ [0, T ]. Note that

σ(t)
(
1 + |x + Φ(t)|) ≤ σ(t)

(
1 + |Φ(t)|)(1 + |x |).

Together with (52), this results in

|G0(t, x)| ≤ σ(t)
(
1 + |Φ(t)|)(1 + |x |)

for all t ∈ [0, T ] and for all x ∈ domG(t, ·). Since the function t �→ σ(t) is integrable
and t �→ 1+|Φ(t)| is continuous, their product is integrable. Consequently,G satisfies
assumption (LG).

(YB): Let Y F
λ (t, ·) and YG

λ (t, ·) denote the Yosida approximation of F(t, ·) and
G(t, ·) respectively. With F satisfying (YB), and observing that x ∈ domG(s, ·) if
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and only if x + Φ(s) ∈ dom F(s, ·), we get, for all 0 ≤ s < T , λ < Λ,

|YG
λ (s + λ, x)| ≤ |YG

λ (s + λ, x + Φ(s) − Φ(s + λ))|
+ |YG

λ (s + λ, x) − YG
λ (s + λ, x + Φ(s) − Φ(s + λ))|

≤ |Y F
λ (s + λ, x + Φ(s))| + Mu

≤ Mu + θ(s + λ) − θ(s) + |F0(s, x + Φ(s))|
= θ(s + λ) − θ(s) + |G0(s, x)| (53)

where θ(s) = Mu + θ(s) for some Mu > 0. In writing down the second inequality,
we used the fact that YG

λ (t, x) = Y F
λ (t, x + Φ(t)), and moreover, λ−1-Lipschitzian

property of YG
λ (t, ·) along with integrability of u yields

|YG
λ (s + λ, x) − YG

λ (s + λ, x + Φ(s) − Φ(s + λ))| ≤ Mu

for some Mu > 0. ��
Now, we turn our attention to differential inclusions of the form

ẋ(t) ∈ −F
(
t, x(t)

)+ f
(
x(t)

)+ u(t), x(0) = x0 (54)

where F(t, ·) : R
n ⇒ R

n is maximal monotone for all t ≥ 0, f : R
n → R

n is a
function and u ∈ L1([0, T ], R

n). Based on Theorem 22, we present the following
existence and uniqueness result.

Theorem 23 Consider system (54) and suppose that u ∈ L1([0, T ], R
n), f : R

n →
R
n is a Lipschitz continuous function, and F(t, ·) satisfies assumptions (A1), (A2),

and (A3). If (LG) holds, then for every x0 ∈ cl
(
dom F(0, ·)), there exists a unique

solution x ∈ AC([0, T ], R
n). If (YB) holds, then for every x0 ∈ dom F(0, ·), there

exists a unique solution x ∈ AC([0, T ], R
n).

Proof Let x0 ∈ cl
(
dom F(0, ·)) and let x0(t) = x0 for all t ∈ [0, T ]. It follows from

Theorem 22 that for each integer � with � ≥ 1 there exists a unique absolutely con-
tinuous function x�+1 : [0, T ] → R

n such that x�+1(0) = x0, x�+1(t) ∈ dom F(t, ·)
and the differential inclusion

ẋ�+1(t) ∈ −F
(
t, x�+1(t)

)+ f
(
x�(t)

)+ u(t)

holds for almost all t ∈ [0, T ]. In the rest of the proof, we will construct a solution of
(54) by showing that the sequence {x�(τ )}�∈N is a Cauchy sequence that converges to
an absolutely continuous function which satisfies (54).

Step 1: The sequence {x�(τ )}�∈N is Cauchy. By using (A1) and Lipschitzness of f ,
we see that

1

2

d

dt

(|x�+1(t) − x�(t)|2
) = 〈ẋ�+1(t) − ẋ�(t), x�+1(t) − x�(t)〉

≤ L f |x�(t) − x�−1(t)| |x�+1(t) − x�(t)|
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for almost all t ∈ [0, T ] where L f is the Lipschitz constant of f . By integrating both
sides from 0 to τ ∈ [0, T ], we obtain

1

2
|x�+1(τ ) − x�(τ )|2 ≤

∫ τ

0
L f |x�(s) − x�−1(s)| |x�+1(s) − x�(s)| ds.

Application of [9, Lemma A.5, p. 157] results in

|x�+1(τ ) − x�(τ )| ≤
∫ τ

0
L f |x�(s) − x�−1(s)| ds

for all τ ∈ [0, T ]. Hence, we get

|x�+1(τ ) − x�(τ )| ≤ (L f τ)�

�! |x1 − x0|L∞ (55)

for all τ ∈ [0, T ]where | · |L∞ denotes the sup norm. Consequently, (x�)�∈N converges
uniformly on [0, T ] to a function x .

Step 2: The function x belongs to AC([0, T ], R
n). For the moment, suppose that

there exist an integer L and a nondecreasing function ψ̂ : AC([0, T ], R) such that

|x�(τ ) − x�(τ )| ≤ ψ̂(τ ) − ψ̂(τ ) (56)

for all � ≥ L and for all τ , τ with 0 ≤ τ < τ ≤ T . This would mean that we have

|x(τ ) − x(τ )| ≤ |x(τ ) − x�(τ )| + |x�(τ ) − x�(τ )| + |x�(τ ) − x(τ )|
≤ |x(τ ) − x�(τ )| + ψ̂(τ ) − ψ̂(τ ) + |x�(τ ) − x(τ )|
≤ ψ̂(τ ) − ψ̂(τ )

for all τ , τ with 0 ≤ τ < τ ≤ T where the first inequality follows from the triangle
inequality, the second from (56) for all � ≥ L , and the third by taking the limit as �

tends to infinity. Thus, absolute continuity of x follows from absolute continuity of
the function ψ̂ .

To prove (56), we first observe that the triangle inequality and (55) result in

|x�(τ )| ≤ |x�(τ ) − x�−1(τ )| + |x�−1(τ )|

≤
l−1∑
i=1

|xi+1(τ ) − xi (τ )| + |x1(τ )|

≤ (eL f τ − 1) + |x1(τ )| ≤ C1

for someC1 > 0, and each � ≥ 1, τ ∈ [0, T ]. Hence, in particular, |x�(·)| is uniformly
bounded for each � ≥ 1. The bound in (56) is obtained differently in case if F(·, ·)
satisfies (LG) or (YB).
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If F satisfies (LG): Similar to function ϕ in (51), let us introduce the function ϕ�

as,

ϕ�(t) = ϕ(t) +
∫ t

0
| f (x�−1(τ ))| + |u(τ )| dτ

so that, the Lipschitz continuity of f , | f (z)| ≤ | f (0)| + L f |z|, yields

ϕ�(τ ) − ϕ�(τ ) ≤ L f

∫ τ

τ

|x�−1(τ )| dτ + | f (0)|(τ − τ) +
∫ τ

τ

|u(τ )| dτ

≤ (L f C1 + | f (0)|)(τ − τ) +
∫ τ

τ

|u(τ )| dτ.

By introducing the function ψ�, similar to (17), as

ψ�(t) = t + 2ϕ�(t) + (1 + γ )

∫ t

0
σ(s) ds ∀ t ∈ [0, T ],

and by letting g(s) := s + (1 + γ )
∫ s
0 σ(τ) dτ + 2

∫ s
0 |u(τ )| dτ , we get

ψ�(τ) − ψ�(τ) = τ − τ + 2ϕ�(τ ) − 2ϕ�(τ ) + (1 + γ )

∫ τ

τ

σ (τ )dτ

≤ g(τ ) − g(τ ) + 2(L f C1 + | f (0)|)(τ − τ).

It follows from (46) that |x�(τ ) − x�(τ )| ≤ ψ�(τ) − ψ�(τ). Thus we get

|x�(τ ) − x�(τ )| ≤ g(τ ) − g(τ ) + 2 L f C1(τ − τ)

for each � ≥ 1, and hence (56) follows with ψ̂(s) := g(s)+2 L f C1s, which is clearly
an absolutely continuous function.

If F satisfies (YB): In that case, the function ψ� is obtained from (41), so that
ψ�(s) := α s. The constant α := 2(θ(T ) − θ(0)), where θ is defined as in (53), that
is, θ(s) := Mu +C1 + θ(s), for some C1, Mu ≥ 0, which is independent of �. Hence,
we take ψ̂(s) = α s, which is clearly absolutely continuous.

Step 3: The function x satisfies (54). In view of Lemma 21, x� is a solution to the
differential inclusion

ẋ�(t) ∈ −G�

(
t, x�(t)

)
, x�(0) = x0

for all � ≥ 1whereG�(t, ξ) = F(t, ξ+Φ�(t)
)
withΦ�(t) = ∫ t

0 f
(
x�−1(τ )

)+u(τ ) dτ .
Note that graphG�(t, ·) = graph F(t, ·) − {Φ�(t)} × {0}.

Let us introduce the sequence y� := dx�

dψ̂
, so that

ẋ�(t) = ˙̂ψ(t)y�(t) ∈ −F(t, x�(t)) + f (x�(t)) + u(t).
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Because of the bound (56), |y�|L∞ ≤ 1, and there exists a subsequence N such that
(y�)�∈N converges to y weakly in L2(dψ̂, [0, T ], R

n). It then follows from Lemma 7
that

ẋ(t) = ˙̂ψ(t)y(t)

for almost all t ∈ Γ := {t ∈ [0, T ] | x�, � ≥ L, x, and ψ are differentiable at t}.
Let t∗ ∈ Γ . By construction, we have

(
x�(t

∗),−ẋ�(t
∗)
) ∈ graphG�

(
t∗, x�(t

∗)
)

or equivalently,

(
x�(t

∗),− ˙̂ψ(t∗)y�(t∗)
)

∈ graphG�(t
∗, x�(t

∗)).

In other words, y�(t∗) belongs to the convex set −1
˙̂ψ(t∗)

G�(t∗, x�(t∗)). Using Lemma 9

with S�(t) = −1
˙̂ψ(t)

G�(t, x�(t)), and recalling that | ˙̂ψ(t)| ≥ 1 for each t ∈ [0, T ], we
see that

ẋ(t∗) = ˙̂ψ(t∗)y(t∗) ∈ cl

(
conv

(
lim sup
�→∞

S�(t
∗)
))

⊆ −G(t∗, x(t∗))

and the same holds for almost every t∗ ∈ [0, T ]. ��

7 Linear systems andmaximal monotone relations

Aparticularly interesting class of time-dependent maximal monotonemappings arises
from the interconnection of linear passive systems with maximal monotone relations.
To formalize this class of systems, consider the linear system

ẋ(t) = Ax(t) + Bz(t) + u(t) (57a)

w(t) = Cx(t) + Dz(t) + v(t) (57b)

where x ∈ R
n is the state, u ∈ R

n and v ∈ R
m are external inputs, and (z, w) ∈ R

m+m

are the external variables that satisfy

(− z(t), w(t)
) ∈ graph(M) (57c)

for some set-valued mapM : R
m ⇒ R

m .
By solving z from the relations (57b), (57c), and substituting in (57a), we obtain

the differential inclusion

ẋ(t) ∈ −H
(
t, x(t)

)+ u(t) (58)
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where

H(t, x) = −Ax + B(M + D)−1(Cx + v(t)
)

(59)

and

dom H(t, ·) = C−1( im(M + D) − v(t)
)
.

The rest of this section is devoted to developing conditions under which the time-
dependent set-valued mapping H(t, ·) satisfies the hypotheses of Theorem 11. To
establish such conditions, we first introduce the notion of passivity of a linear system.

A linear system Σ(A, B,C, D)

ẋ(t) = Ax(t) + Bz(t)

w(t) = Cx(t) + Dz(t)

is said to be passive, if there exists a nonnegative-valued storage function V : R
n →

R+ such that the so-called dissipation inequality

V (x(t1)) +
∫ t2

t1
z�(τ )w(τ) dτ ≤ V (x(t2))

holds for all t1, t2 with t1 < t2 and for all trajectories (z, x, w) ∈ L2([t1, t2], R
m) ×

AC([t1, t2], R
n) × L2([t1, t2], R

m) of the system (60).
The classical Kalman–Yakubovich–Popov lemma states that the system (60) is

passive if, and only if, the linear matrix inequalities

K = K� ≥ 0

[
A�K + K A K B − C�
B�K − C −(D� + D)

]
≤ 0 (61)

admits a solution K . Moreover, V (x) = 1
2 x

�Kx defines a storage function in case K
is a solution of the linear matrix inequalities (61).

In the following proposition, we summarize some of the consequences of passivity
that will be used later.

Proposition 1 ([17, Lem. 1]) If Σ(A, B,C, D) is passive with the storage function
x �→ 1

2 x
�Kx then the following statements hold:

(i) D is positive semi-definite.
(ii) (K B − C�) ker(D + D�) = {0}.

The following theorem states conditions that guarantee the hypotheses of Theo-
rem 22 for the time-dependent set-valued mapping H as defined in (59).

Theorem 24 Let T > 0. Suppose that

(i) Σ(A, B,C, D) is passive with the storage function x �→ 1
2 x

�x,
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(ii) M is maximal monotone,
(iii) for all t ∈ [0, T ], we have1 imC ∩ ri

(
im(M + D) − v(t)

) �= ∅,
(iv) v is bounded on [0, T ],
(v) there exists an absolutely continuous nondecreasing function θ : [0, T ] → R such

that

sup
w∈imC∩(im(M+D)−v(s))

dist
(
w, imC ∩ ( im(M + D) − v(t)

)) ≤ θ(t) − θ(s)

for all s, t with 0 ≤ s ≤ t ≤ T .
(vi) There exists a positive number α such that

|B((M + D)−1)0(η)| ≤ α(1 + |η|)

for all η ∈ dom (M + D)−1.

Then, H satisfies assumptions (A1), (A2), (A3), and (LG).

Proof For brevity, we define W (t) := im(M+ D) − v(t) for all t ∈ [0, T ]. Note that
dom H(t, ·) = C−1W (t) for all t ∈ [0, T ].

(A1): It follows from [19, Thm. 2] that the conditions (i.)-(iii.) imply that H(t, ·) is
amaximalmonotonemapping for all t ∈ [0, T ]. As such, H satisfies assumption (A1).

(A3): Let t and s be such that 0 ≤ s ≤ t ≤ T . Also, let x ∈ C−1W (s) and
let y = proj

(
x,C−1W (t)

)
. Further, let ζ = proj

(
Cx, imC ∩ W (t)

)
. Therefore,

there exists ξ such that ζ = Cξ . Without loss of generality, we can assume that
x − ξ ∈ imC� since R

n = imC� ⊕ kerC . Now, we see that Cx ∈ imC ∩W (s) and
ζ = Cξ ∈ cl

(
imC ∩ W (t)

)
. From (v.), we get

|Cx − Cξ | ≤ θ(t) − θ(s).

Since x − ξ ∈ imC�, there exists a positive number α such that

|x − ξ | ≤ α
(
θ(t) − θ(s)

)
.

Since ξ ∈ C−1W (t), we obtain

|x − y| ≤ |x − ξ | ≤ α
(
θ(t) − θ(s)

)
.

Therefore, we see that

dist
(
x,C−1W (t)

) ≤ α
(
θ(t) − θ(s)

)
.

This implies that

sup
x∈C−1W (s)

dist
(
x,C−1W (t)

) ≤ α
(
θ(t) − θ(s)

)
.

1 Here, ri(S) denotes the relative interior of S.
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Since dom H(t, ·) = C−1W (t), we can conclude that H satisfies assumption (A3).
(LG): From (vi.), we know that there exists a positive number α such that

|B((M + D)−1)0(η)| ≤ α(1 + |η|) (62)

for all η ∈ dom (M + D)−1. Let x ∈ dom H(t, ·) for some t ∈ [0, T ]. Since Ax −
Bz0 ∈ H(t, x) where z0 ∈ ((M + D)−1)0

(
Cx + v(t)

)
, we have

|H0(t, x)| ≤ |Ax − Bz0| ≤ |Ax | + |Bz0|. (63)

Since x ∈ dom H(t, ·), it follows that Cx + v(t) ∈ B
m(ρ) ∩ dom(M + D)−1, and

using (62), (63), and boundedness of v, we get

|H0(t, x)| ≤ |Ax | + αρ(1 + |Cx + v(t)|) ≤ β(1 + |x |)

for some positive number β that does not depend on t . Therefore, we have

|H0(t, x)| ≤ β(1 + |x |)

for all x ∈ dom H(t, ·) with t ∈ [0, T ]. In other words, H satisfies assumption (LG).
(A2): Let (t�, x�, y�)�∈N ⊆ [0, T ]×R

n×R
n be a sequence such that y� ∈ H(t�, x�)

and lim�↑∞(t�, x�, y�) = (t, x, y) for some t ∈ [0, T ], x, y ∈ R
n . What needs to be

proven is that y ∈ H(t, x).
Note that for each � there exists z� ∈ (M + D)−1

(
Cx� + v(t�)

)
such that y� =

−Ax� + Bz�. Then, (Bz�)�∈N converges. LetW be the subspace parallel to the affine
hull of im(M + D) = dom(M + D)−1. It follows from maximal monotonicity of
(M + D)−1 that for each �

ζ + z� ∈ (M + D)−1(Cx� + v(t�)
)

(64)

holds for any ζ ∈ W⊥. Now, let z� = z1� + z2� where z1� ∈ ker B ∩ W⊥ and

z2� ∈ (ker B ∩ W⊥)⊥ = im B� + W. (65)

Note that

Bz� = Bz2�. (66)

From (64) by taking ζ = −z1� , we have

z2� ∈ (M + D)−1(Cx� + v(t�)). (67)

Suppose that (z2�)�∈N is bounded. Hence, (z2�)�∈N converges on a subsequence N , say
to z. Then, we see from (x�, y�) = (x�,−Ax� + Bz�) that (x�, y�)�∈N converges to
(x, y) = (x,−Ax + Bz). Since H(t, ·) is maximal monotone and that implies the
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closedness of graph
(
H(t, ·)), we then can conclude that (x, y) ∈ graph

(
H(t, ·)), or

equivalently y ∈ H(t, x).
Therefore, it is enough to show that (z2�)�∈N is bounded. Suppose, on the contrary,

that z2� is unbounded. Without loss of generality, we can assume that the sequence
z2�
|z2� |

converges. Define

ζ∞ = lim
�→∞

z2�
|z2� |

. (68)

From (66) and the fact that (Bz�)�∈N converges, we have

lim
�→∞ Bz2� = Bζ.

Thus, we get

ζ∞ ∈ ker B. (69)

Let (x̄, ȳ) ∈ graph H(t, ·). Then, ȳ = −Ax̄ + Bz̄ where

z̄ ∈ (M + D)−1(Cx̄ + v(t)
)
. (70)

Due to passivity with K = I and monotonicity of (M + D)−1, it follows from
(67) and (70) that

〈
x� − x̄,−A(x� − x̄) + B(z2� − z̄)

〉
≥
〈
z2� − z̄,C(x� − x̄) − D(z2� − z̄)

〉
≥ −

〈
z2� − z̄, v(t�) − v(t)

〉
.

By dividing by |z2�|2, taking the limit as � tends to infinity and using boundedness of
v, we obtain

〈ζ∞, Dζ∞〉 ≤ 0.

Since D is positive semi-definite due to the first statement of Proposition 1, this results
in

ζ∞ ∈ ker(D + D�).

Then, it follows from (69), K = I , and the second statement of Proposition 1 that

ζ∞ ∈ kerC�. (71)
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Let η ∈ im(M+ D) − v(t) and ζ ∈ (M+ D)−1
(
η + v(t)

)
. In view of monotonicity

of (M + D)−1, we get

〈
z2� − ζ

|z2� |
,Cx� + v(t�) − η − v(t)

〉
≥ 0,

from (67). Taking the limit as � tends to infinity, employing boundedness of v, and
using (71), we obtain

〈ζ∞,Cx − η〉 = 〈ζ∞,−η〉 ≥ 0. (72)

From (71) and (72), we see that the hyperplane span({ζ∞})⊥ separates the sets imC
and im(M + D) − v(t). In view of imC = ri(imC) and (iii.), it follows from [55,
Thm. 11.3] that imC and im(M+D)−v(t) cannot be properly separated. Therefore,
both imC and im(M+ D)− v(t) must be contained in the hyperplane span({ζ∞})⊥.
Thus, we see that im(M + D) is contained in v(t) + span({ζ∞})⊥. Since W is the
subspace parallel to the affine hull of im(M + D), we get W ⊆ span({ζ∞})⊥ which
implies ζ∞ ∈ W⊥. Together with (69), we get

ζ∞ ∈ ker B ∩ W⊥.

In view of (65) and (68), this yields ζ∞ = 0. This, however, clearly contradicts with
(68). Therefore, |z2�| must be bounded. ��

Next, we specialize the results of Theorem 24 to linear complementarity systems.

7.1 Linear complementarity systems

Linear complementarity systems are important instances of the differential inclusions
of the form (58) with M described by so-called complementarity relations. In this
section, we aim at presenting tailor-made conditions for existence and uniqueness of
solutions to linear complementarity systems.

Consider a linear complementary system

ẋ(t) = Ax(t) + Bz(t) + u(t)

w(t) = Cx(t) + Dz(t) + v(t)

where x ∈ R
n is the state, u ∈ R

n and v ∈ R
m are external inputs, and (z, w) ∈ R

m+m

are the external variables that satisfy

(− z(t), w(t)
) ∈ graph(P)

where P : R
m ⇒ R

m is the maximal monotone set-valued mapping given by

P(ζ ) = {η : η ≥ 0, ζ ≤ 0, and 〈η, ζ 〉 = 0}.
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Next, we introduce the linear complementarity problem.
Given a vector q ∈ R

m and a matrix M ∈ R
m×m , the linear complementarity

problem LCP(q, M) is to find a vector z ∈ R
m such that

z ≥ 0 (74a)

q + Mz ≥ 0 (74b)

〈z, q + Mz〉 = 0. (74c)

We say that the LCP(q, M) is feasible if there exists z satisfying (74a) and (74b). If
a vector z is feasible and satisfies (74c) in addition, then we say that z solves (is a
solution of ) LCP(q, M). The set of all solutions of LCP(q, M) will be denoted by
SOL(q, M).

A comprehensive study on LCPs can be found in [21]. In the sequel, we will be
interested in LCP(q, M) where M is a (not necessarily symmetric) positive semi-
definite matrix.

Given a square matrix M , we define

QM := SOL(0, M) = {z : z ≥ 0, Mz ≥ 0, and 〈z, Mz〉 = 0}

and its dual cone

Q+
M = {ζ : 〈ζ, z〉 ≥ 0 for all z ∈ QM }.

WhenM is (not necessarily symmetric) a positive semi-definite matrix, the setQM is a
convex cone and can be given byQM = {z : z ≥ 0, Mz ≥ 0, and (M + M�)z = 0}.

The following proposition characterizes the conditions under which an LCP with
positive semi-definite M matrix has solutions.

Proposition 25 (Cor. 3.8.10 of [21] and Lem. 23 of [15]). Let M be a positive semi-
definite matrix. Then, the following statements are equivalent:

(i) q ∈ Q+
M.

(ii) LCP(q, M) is feasible.
(iii) LCP(q, M) is solvable.

Moreover, the following statements hold:

(iv) For each q ∈ Q+
M, there exists a unique least-norm solution z∗(q) ∈ SOL(q, M)

in the sense that |z∗(q)| ≤ |z| for all z ∈ SOL(q, M).
(v) There exists a positive number α such that

|z∗(q)| ≤ α|q| ∀ q ∈ Q+
M .

Now, define

HP (t, x) = −Ax + B(P + D)−1(Cx + v(t)
)
. (75)
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Note that dom HP (t, ·) = C−1
(
im(P + D) − v(t)

)
. Moreover, q ∈ (P + D)(z) if

and only if −z ∈ SOL(q, D). This means that q ∈ (P + D)(z) if and only if q ∈ Q+
D

in view of Proposition 25. In other words, dom HP (t, ·) = C−1
(Q+

D − v(t)
)
.

The following theorem provides streamlined conditions that guarantee the hypothe-
ses of Theorem 24 for the time-dependent set-valued mapping HP as defined in (75).

Theorem 26 Let T > 0. Suppose that

i. Σ(A, B,C, D) is passive with the storage function x �→ 1
2 x

�x,
ii. imC ∩ ri

(
im(P + D) − v(t)

) �= ∅ for all t ∈ [0, T ],
iii. v ∈ AC([0, T ], R

m),

Then, HP satisfies assumptions (A1), (A2), (A3), and (LG).

Proof It is enough to show that HP satisfies the hypotheses (i.)-(vi.) of Theorem 24.
The first four hypotheses of Theorem 24 are readily satisfied. Therefore, we need to
show that the remaining two also hold.

For the hypothesis (v.) of Theorem 24, we need a streamlined version of Hoffman’s
bound on the polyhedral sets. To elaborate, let∅ �= R ⊆ R

m be a polyhedral set given
by R = {ζ : Rζ = 0 and Qζ ≤ q} where R, Q are matrices and q is vector with
appropriate sizes. Hoffman’s bound (see e.g. [24, Lemma 3.2.3]) asserts that there
exists a positive number α that depend on R such that

dist(x,R) ≤ α
(|Rx | + |max(0, Qx − q)|) (76)

for all x ∈ R
m where max denotes componentwise maximum. By definition Q+

D is a
polyhedral cone. Therefore, we have Q+

D = {η ∈ R
m : Qη ≤ 0} for some matrix Q.

Let E be a matrix such that imC = ker E . Then, we have

imC ∩ ( im(P + D) − v(t)
) = imC ∩ (Q+

D − v(t)
)

= {ζ ∈ R
m : Eζ = 0 and Qζ ≤ −Qv(t)} (77)

for all t ∈ [0, T ].
Let s, t be such that 0 ≤ s ≤ t ≤ T and w ∈ imC ∩ ( im(P + D) − v(s)

)
. From

(77), we see that

Ew = 0 and Qw ≤ −Qv(s). (78)

Now, we have

dist
(
w, imC ∩ ( im(P + D) − v(t)

)) (76)≤ α
(
|Ew| + |max

(
0, Qw + Qv(t)

)|)
(78)≤ α|max

(
0,−Qv(s) + Qv(t)

)|
≤ β|v(s) − v(t)| (79)
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where β is a positive number. Since v is absolutely continuous, we have

|v(s) − v(t)| =
∣∣∣∣
∫ t

s
v̇(τ ) dτ

∣∣∣∣ ≤
∫ t

s
|v̇(τ )| dτ =

∫ t

0
|v̇(τ )| dτ −

∫ s

0
|v̇(τ )| dτ.

Then, (79) implies that

sup
w∈imC∩(im(P+D)−v(s))

dist
(
w, imC ∩ ( im(P + D) − v(t)

)) ≤ θ(t) − θ(s)

for all s, t with 0 ≤ s ≤ t ≤ T where θ(t) = 1
β

∫ t
0 |v̇(τ )| dτ for all t ∈ [0, T ]. Clearly,

θ is nondecreasing and absolutely continuous.
For the hypothesis (vi.) of Theorem 24, note that ζ ∈ (P + D)−1(η) if and only if

−ζ ∈ SOL(η, D). Due to Proposition 1, D is positive semi-definite. Then, it follows
from Proposition 25 that there exists a positive number α such that

(
(P + D)−1)0(η) ≤ α|η|

for all η ∈ dom (P + D)−1. Therefore, HP satisfies the hypothesis (vi.) of Theo-
rem 24. ��

8 Conclusions

In this article, we have studied the existence of solutions to differential inclusions
with time-dependent maximal monotone operators. With the help of an example, it
is shown that our proposed conditions overcome the limitations of existing results.
As a particular class of these inclusions, we consider differential equations coupled
with time-dependent complementarity relations. For this system class, conditions for
existence of solutions are derived explicitly in terms of system data. To build on
these results, the conditions for existence of solutions can be relaxed for differential
inclusions where the maximal monotone operators have a particular structure, for
example [63].

Moving forward from the question of existence of solutions, it is also of interest
to study the qualitative properties of the solutions of such systems, such as continuity
with respect to initial data [45]. One can also investigate stability related problems for
the generic class of dynamical systems, as has been done for some specific set-valued
systems in [62]. It also remains to be seen whether our proposed results provide any
advantages in the study of optimal control problems, such as [10].
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