
Linear Complementarity Systems and
Cone-Copositive Lyapunov Stability

L. Iannelli\, R. Iervolino♦, F. Vasca\

Abstract—Exponential stability of the origin of linear com-
plementarity systems (LCS) is analyzed by applying Lyapunov
theory. By representing the feasibility and the solution sets of
the LCS as cones, a cone-copositive approach is used to get
sufficient stability conditions expressed in terms of linear matrix
inequalities (LMI). The proposed method is constructive in the
sense that the solution of the set of LMI directly provides a
quadratic Lyapunov function. Sufficient conditions for piecewise
quadratic Lyapunov functions are obtained, as well. Illustrative
examples show the effectiveness of the approach.

Index Terms—Stability of hybrid systems, Lyapunov methods,
Hybrid systems, Switched systems, LMIs.

I. INTRODUCTION

L INEAR complementarity systems (LCS) are character-
ized by continuous-time linear time-invariant dynamics

coupled with input-output variables constrained by comple-
mentarity conditions [1]. Structural properties for LCS have
been investigated, such as controllability, observability, pas-
sivity [2] and Zeno behaviour [3].

The exponential stability problem of the origin of LCS is
considered herein. This issue has been analyzed in [4] where
a quadratic Lyapunov function of both state and complemen-
tarity variables has been used in order to prove the stability
of the origin. When specified in terms of the state variables
alone, the Lyapunov function becomes piecewise quadratic.
The sufficient stability conditions proposed in that paper are
in general not easy to verify, moreover the state solution of
the LCS is assumed to be of class C1. A similar Lyapunov
approach has been used in [5] where the authors extended the
stability analysis to the presence of delays.

The stability issue can be also tackled by exploiting a
cone-copositive approach, as in [6] where asymptotic stability
conditions are obtained for evolution variational inequalities,
which include some particular classes of LCS. Cone-copositive
programming, applied to unknown matrices, has been used
to achieve LMI which express sufficient conditions for the
asymptotic stability of conewise linear systems [7] and piece-
wise affine systems with polyhedral state space partitions [8].
In this paper, by looking for constructive and less conservative
conditions, we represent the solution set of the complemen-
tarity problem as the union of polyhedral cones and then we
use the cone-copositive approach for obtaining operative LMI
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which synthesize stability conditions with a common quadratic
Lyapunov function. A generalization to the case of piecewise
quadratic Lyapunov functions defined on a conic partition of
the solution set is proposed, too.

II. NOTATIONS AND PRELIMINARIES

The notation ‖v‖ indicates the euclidean norm of the vector
v ∈ Rn. A set C ⊆ Rn such that for all v ∈ C it is αv ∈ C
for any scalar α ≥ 0, is called a cone. Given a finite number
ρ of points {r`}ρ`=1, r` ∈ Rn, ρ ∈ N, the (convex) set of
points v ∈ Rn such that v =

∑ρ
`=1 r`θ`, with θ` ∈ R+,

R+ being the set of nonnegative real numbers, is called a
polyhedral cone. The points {r`}ρ`=1 are called rays of the
polyhedral cone. The matrix R ∈ Rn×ρ whose columns are
the points {r`}ρ`=1 in an arbitrary order is called ray matrix
and identifies a V-representation of the polyhedral cone [9].
Any non-empty polyhedral cone can be equivalently defined
as the set of points v ∈ Rn such that Ev ≥ 0 with E ∈ Rµ×n
which identifies a H-representation of the polyhedral cone [9].

Given a cone X , a collection of polyhedral cones {Xi}Ni=1

with N positive integer provides a conic polyhedral partition
of X if ∪Ni=1Xi = X and (Xi\∂Xi) ∩ (Xj\∂Xj) = ∅ for all
i 6= j. In the following the term partition will refer to a conic
polyhedral partition.

The notation P < 0 indicates that P is positive semidefinite.
A matrix P is called a P-matrix if all the principal minors
of the matrix are positive. Every positive definite matrix, i.e.
P � 0, is in this class but not vice-versa. A symmetric matrix
P ∈ Rn×n which is positive semidefinite with respect to a
cone C ⊆ Rn, i.e. v>Pv ≥ 0 for any v ∈ C, is cone-copositive
with respect to C. A (strictly) cone-copositive matrix will be
denoted by (P �C 0) P <C 0. In the particular case C = Rn+, a
(strictly) cone-copositive matrix is called (strictly) copositive.

The cone-copositivity of a known symmetric matrix P on
a polyhedral cone C can be checked through a sufficient LMI
condition.

Lemma 1: ([8]) Let P ∈ Rn×n be a symmetric matrix,
R ∈ Rn×ρ be a ray matrix of the polyhedral cone C ⊂ Rn. If
there exists a symmetric (entrywise) positive matrix N ∈ Rρ×ρ
such that the following LMI

R>PR−N < 0 (1)

is satisfied, then P is strictly cone-copositive on C.
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III. COMPLEMENTARITY AND CONE-COPOSITIVITY

A LCS is defined as a combination of a linear system with
complementarity constraints:

ẋ = Ax+Bz (2a)
w = Cx+Dz (2b)
w ≥ 0, z ≥ 0 (2c)

w>z = 0 (2d)

where x ∈ Rn is the state vector, (w, z) ∈ Rm+ × Rm+ are
the complementarity variables, A ∈ Rn×n, B ∈ Rn×m,
C ∈ Rm×n, D ∈ Rm×m are given constant matrices. The
complementarity conditions (2c)–(2d) mean that w and z
are componentwise nonnegative and for each pair of scalar
components one of the two must be zero.

A. Feasibility and solution sets related to LCS

For a given x the expressions (2b)–(2d) define the linear
complementarity problem LCP (Cx,D). The set of z ∈ Rm
which satisfy (2b)–(2c) is called the feasibility set of the
LCP (Cx,D) [10]. By considering the orthogonality con-
straint (2d) too, one can define the solution set of the LCP:

SOL(Cx,D) = {z ∈ Rm |w = Cx+Dz,

w ≥ 0, z ≥ 0, w>z = 0}. (3)

If D is a P-matrix than SOL(Cx,D) is a singleton for any
x ∈ Rn [2]. In the more general case of D not being a P-
matrix, SOL(Cx,D) is not necessarily singleton and it could
also be empty. We are interested to restrict our analysis to the
set of x for which SOL(Cx,D) is nonempty.

In particular, in view of the stability result for the origin of
the state space of the system (2), the evaluation of SOL(0, D)
plays a crucial role. Clearly 0 ∈ SOL(0, D) for all D and
this solution is unique when D is a P-matrix. In general,
SOL(0, D) could have multiple solutions as shown by the
following result.

Lemma 2: The LCP (0, D) with D = −D> skew symmet-
ric admits non zero solutions.

Proof: Let us consider the polyhedral cone K = {v ∈
Rm |Dv ≥ 0}, whose H-representation is given by the matrix
D, and the corresponding dual cone K∗ = {ω ∈ Rm |ω>v ≥
0, ∀v ∈ K}. Note that for any polyhedral cone {v |Mv ≥ 0}
the corresponding dual cone is given by {ω|ω = M>y, y ≥
0}. Thus, being D a skew symmetric matrix, the dual cone
becomes K∗ = {ω |ω = −Dy, y ≥ 0}.

Since D is skew symmetric we have v>Dv = 0 ∀v ∈ Rm.
Thus, from (3) in this particular case SOL(0, D) = K ∩Rm+ .
Now let us assume by contradiction that K∩Rm+ = {0}. Since
K and Rm+ are nonempty convex sets, intRm+ 6= ∅ and K ∩
intRm+ = ∅ by contradiction, it comes out that Rm+ and K can
be properly separated (see [11, Theorem 2.39]). Furthermore,
by considering that K and Rm+ are convex cones, it follows
that −K∗ ∩ Rm+ 6= {0} (see [11, Exercise 6.48, (a)]). Thus,
there exists a ω̄ 6= 0 such that ω̄ ∈ Rm+ and −ω̄ ∈ K∗ and
as a result there exists a ȳ ≥ 0 such that ω̄ = Dȳ ≥ 0. The
existence of a nonzero ȳ ∈ K∩Rm+ , contradicts the hypothesis.

If x is a variable, we consider all x and z which sat-
isfy (2b)–(2c). By introducing the vector ξ ∈ Rn+m the
expressions (2b)–(2c) can be rewritten as

Γξ ≥ 0 (4)

with Γ = (C D
0 I ) ∈ R2m×(n+m). The set of ξ which satisfy (4)

is called the feasibility set related to the LCS (2) and it is a
polyhedral cone in Rn+m with the matrix Γ defining its H-
representation:

F = {ξ ∈ Rn+m |Γξ ≥ 0}, (5)

i.e., all ξ such that Γξ is componentwise nonnegative.
We now consider the orthogonality constraint (2d) too.

Since w and z are both nonnegative, under (2b)–(2c) the
constraint (2d) can be replaced by 2w>z ≤ 0 which can be
rewritten by means of the quadratic inequality −ξTHξ ≥ 0
with H ∈ R(n+m)×(n+m) given by

H =

(
0 C>

C D +D>

)
. (6)

We call
S = {ξ ∈ F| − ξTHξ ≥ 0} (7)

the solution set related to the LCS and it contains all pairs
(x, z) satisfying (2). The solution set S is different (also
dimensionally) from the solution set SOL(Cx,D) in (3)
which contains all (and only) z satisfying the LCP (Cx,D)
for a given x. Clearly 0 ∈ S, i.e. S is nonempty.

The set S is itself a (not necessarily convex) cone, as it
can be verified by using the cone definition. It is interesting
to compare the polyhedral cone F and the cone S. Clearly
S ⊆ F by definition. Moreover, since all ξ ∈ F correspond to
nonnegative w and z, while the set S includes the condition
w>z = 0, it is S ⊆ ∂F .

The quadratic form in (7) is a cone-copositive condition on
the cone S for the matrix −H , but it is not a cone-copositive
condition on F .

B. Cone-copositivity on the solution set

The stability analysis will exploit conditions for the sign of
quadratic forms on the solution set S that is not necessarily
convex, differently from the polyhedral cone F . Hence the
problem of verifying the sign of a quadratic form ξ>Qξ on S,
with Q ∈ R(n+m)×(n+m), i.e. the cone-copositive condition

−Q �S 0, (8)

cannot be tackled by applying Lemma 1 to (8). From the defi-
nition of S in (7), the condition (8) can be equivalently written
with −ξTQξ > 0, ∀ξ ∈ F − {0} such that −ξTHξ ≥ 0, i.e.
a cone-copositive condition for −Q on F plus a quadratic
constraint with the matrix H . This consideration leads to the
following result.

Lemma 3: Let Q ∈ R(n+m)×(n+m) be a symmetric matrix,
R ∈ R(n+m)×ρ be a ray matrix of the polyhedral cone F ⊆
Rn+m, H ∈ R(n+m)×(n+m) be a symmetric matrix. If there
exist {N, τ} with N ∈ Rρ×ρ symmetric (entrywise) positive



matrix and scalar τ > 0, such that the following linear matrix
inequality

−R>(Q− τH)R−N < 0 (9)

is satisfied, then (8) holds.
Proof: Since F is a polyhedral cone, by using Lemma 1,

from (9) it follows −(Q − τH) �F 0. Thus one can write
−ξ>Qξ > −τξ>Hξ>, ∀ξ ∈ F−{0}. Being S ⊆ F , from (7)
it comes out −ξ>Qξ > 0, ∀ξ ∈ S − {0} and then (8) is
satisfied.

IV. CONE-COPOSITIVE LYAPUNOV FUNCTION

The cone-copositive approach can be used for the stability
analysis of LCS. Let us introduce the solution concept for
the system of interest. For those x such that SOL(Cx,D)
related to (2) is nonempty, by collecting (2)-(3) we can write
the differential inclusion [3]

ẋ ∈ Ax+B SOL(Cx,D). (10)

More general formalisms, based on evolution variational in-
equalities or differential inclusions with maximal monotone
operators, can be used for LCS [6], [12]. In this paper, for
notation convenience related to copositivity, complementarity
and stability conditions expressed through LMI, the differen-
tial inclusion form (10) is adopted.

We say that a function x(t) : R+ → Rn is a Carathéodory
solution of (10) on t ∈ R+ for the initial state x(0) = x0

if x(t) is absolutely continuous and it satisfies (10) almost
everywhere for all t ∈ R+. In the following we assume
that (10) has a Carathéodory solution for any x0 ∈ Rn
such that (x0, SOL(Cxo, D)) ∈ S . Moreover we assume
that the system does not exhibit Zeno behaviors. A sufficient
condition for the existence and uniqueness of solution is that
B SOL(Cx,D) is a singleton for all x ∈ Rn [4, Prop. 2.1],
or that some structural properties like passivity hold [2], [13].

Clearly the origin is an equilibrium point for (10). We say
that the origin is asymptotically stable if it is stable and all
solutions of (10) converge to the origin for any x0 ∈ Rn
such that (x0, SOL(Cxo, D)) ∈ S. If the convergence is
exponential we say that the origin is exponentially stable.

The stability analysis of (10) could be tackled by exploiting
the general result of Theorem 4.1 in [14] which concludes the
asymptotic stability through Lyapunov functions sign condi-
tions holding on the entire state space. This approach could
be conservative. By restricting the sign analysis to the solution
set S, one could expect less conservative results.

Let us consider as a candidate Lyapunov function

V (x) = x>Px (11)

with P ∈ Rn×n symmetric matrix. The following Lemma
provides stability conditions in terms of LMI.

Lemma 4: Consider the differential inclusion (10) and say
R ∈ R(n+m)×ρ a ray matrix of the polyhedral cone (5). The
origin is exponentially stable if there exist {P,N, τ} with P ∈
Rn×n, P � 0, N ∈ Rρ×ρ entrywise positive matrix, a scalar
τ > 0, such that

−R>(QP − τH)R−N < 0 (12)

is satisfied with H ∈ R(n+m)×(n+m) given by (6) and QP ∈
R(n+m)×(n+m) given by

QP =

(
A>P + PA PB

B>P 0

)
. (13)

Proof: Let {P,N, τ} be a solution of (12). Since P � 0,
the quadratic function (11) is strictly positive and satisfies

λmin‖x‖2 ≤ V (x) ≤ λmax‖x‖2 (14)

for x ∈ Rn, where λmin and λmax are the (positive) minimum
and the maximum eigenvalues of P .

We want to analyze the sign, on the set S, of the following
scalar product

〈∇xV (x), Ax+Bz〉 = ξ>QP ξ, (15)

with ξ = ( xz ), where QP is given by (13). From Lemma 3 ap-
plied to (12) it follows that −ξ>QP ξ > 0, ∀ξ ∈ S. As a result,
being S a cone, one can write −ξ>QP ξ ≥ cM‖ξ‖2, ∀ξ ∈ S
where cM = min{−ξ>QP ξ | ξ ∈ S, ‖ξ‖ = 1}. Thus, from
the last inequality and by considering that ‖ξ‖2 ≥ ‖x‖2, we
obtain 〈∇xV (x), Ax+Bz〉 ≤ −cM‖x‖2, ∀z ∈ SOL(Cx,D).
By looking at the differential inclusion (10) and by applying
the last inequality and Theorem 4.1 in [14] to any solution
x(t) of (10), it follows that

V (x(t2))− V (x(t1)) ≤ −
∫ t2

t1

cM‖x(σ)‖2dσ, (16)

with t2 ≥ t1. By using standard arguments, by combining (14)
and (16) and by applying the integral version of the Grönwall–
Bellman Lemma, it easily follows that

‖x(t)‖ ≤ λmax

λmin
e−

cM
λmax

t‖x(0)‖ (17)

proving the exponential stability of the origin of (10).
The condition P � 0 can be relaxed by considering a cone-

copositive condition of P ∈ Rn×n on the projection of F ⊆
Rn+m to the state space of (10), say Fx. To this aim consider
the following partition of a ray matrix R ∈ R(n+m)×ρ of the
polyhedral cone F :

R =
(
R>x R>z

)>
(18)

where Rx ∈ Rn×ρ, Rz ∈ Rm×ρ and Fx ={
ξx ∈ Rn|ξx = Rxθ, θ ∈ Rρ+

}
. The polyhedral cone Fx con-

tains any solution of (10) being the cone F the feasibility
set related to the LCS (2). We are now ready to prove the
following stability theorem.

Theorem 5: Consider the differential inclusion (10) and
say R ∈ R(n+m)×ρ a ray matrix of the polyhedral cone (5)
partitioned as in (18). The origin is exponentially stable if
there exist {P,M,N, τ} with P ∈ Rn×n symmetric matrix,
M ∈ Rρ×ρ and N ∈ Rρ×ρ symmetric entrywise positive
matrices, a scalar τ > 0, such that

R>x PRx −M < 0 (19a)

−R>(QP − τH)R−N < 0 (19b)

with H given by (6) and QP given by (13).
Proof: Clearly the origin of Rn belongs to the polyhedral

cone Fx. Let {P,M,N, τ} be a solution of (19). Let us



consider the candidate Lyapunov function (11) which is strictly
positive on the cone Fx because of (19a) and Lemma 1. It fol-
lows that (14) holds with λmin = min{x>Px |x ∈ Fx, ‖x‖ =
1} and λmax = max{x>Px |x ∈ Fx, ‖x‖ = 1}. Then the
function (11) is strictly positive along any solution of (10).
From (19b) one can write −ξ>QP ξ + τξ>Hξ − θ>Nθ ≥ 0,
∀ξ ∈ F , ∀θ ∈ Rρ+. Then it is −ξ>QP ξ ≥ θ>Nθ > 0, ∀ξ ∈ S,
∀θ ∈ Rρ+, and by following analogous steps as in Lemma 4
the proof is complete.

Without loss of generality one can choose τ = 1 in
Theorem 5 and the result below directly follows.

Corollary 6: Consider the differential inclusion (10). Say
R ∈ R(n+m)×ρ a ray matrix of the cone (5) partitioned as
in (18). If there exists P = P> ∈ Rn×n such that

R>x PRx �Rρ+ 0 (20a)

−
(
Rx
Rz

)>(
A>P + PA PB − C>
B>P − C −D −D>

)(
Rx
Rz

)
�Rρ+ 0,

(20b)

then the origin is exponentially stable.
If (19b), and consequently (20b), cannot be satisfied, e.g.

D is skew symmetric, one can formulate (not asymptotic)
stability conditions by relaxing N to be entrywise nonnegative
in Theorem 5. That would result in a relaxed version of Corol-
lary 6 where stability is guaranteed by replacing (20b) with the
corresponding (non strict) copositive condition. Alternatively,
exponential stability can be checked through conditions de-
rived by modifying (20b), so as shown below.

Corollary 7: Consider the differential inclusion (10). Say
R ∈ R(n+m)×ρ a ray matrix of the cone (5) partitioned as
in (18). If there exist P = P> ∈ Rn×n and γ > 0 such that

R>x PRx �Rρ+ 0 (21a)

−
(
Rx
Rz

)>(
A>P + PA+ γI PB − C>

B>P − C −D −D>
)(

Rx
Rz

)
<Rρ+ 0,

(21b)

then the origin is exponentially stable.
Proof: From (21b) and by using arguments similar to

Corollary 6 one can write −ξ>QP ξ − γξ> ( I 0
0 0 ) ξ ≥ 0, ∀ξ ∈

S. Then by using (15) and the last inequality one obtains
〈∇xV (x), Ax + Bz〉 ≤ −γ‖x‖2, for all z ∈ SOL(Cx,D).
Then, by following similar steps of Theorem 5 one concludes
the exponential stability of the origin.

Remark 8: Relations between passivity and stability have
been investigated in [2] for LCS and in [12] for Lur’e systems.
In [6] Sec. VII the assumptions D = 0 and PB = C> are
exploited for achieving copositivity conditions. Our analysis
does not require those assumptions and formulates copositive
conditions as LMI. The expressions (20b) in Corollary 6
and (21b) in Corollary 7 can be interpreted as a passivity
condition and a strict passivity condition [15], respectively,
restricted to the feasibility cone.

V. PIECEWISE CONE-COPOSITIVE LYAPUNOV FUNCTION

The stability conditions derived in the previous section are
expressed through LMI where a common quadratic Lyapunov
function for the LCS is considered. In this section we propose

conditions for the existence of a piecewise quadratic Lyapunov
function (PWQ-LF) [16] for searching a LF when the LMI of
Theorem 5 do not provide a solution.

A. PWQ-LF with D P-matrix

In the case that D ∈ Rm×m is a P-matrix one can
rewrite (10) in the form of a conewise linear system [3],
being SOL(Cx,D) a singleton for all x ∈ Rn. Let us define
the set M = {1, . . . ,m} and say 2M its power set. For
each set of indices α ∈ 2M and the corresponding relative
complement ᾱ =M−α, consider the two equality conditions
(Cx+Dz)α = 0 and zᾱ = 0, together with the two non strict
inequality conditions (Cx+Dz)ᾱ ≥ 0 and zα ≥ 0. Moreover,
define the matrices Cα• and Dα• as the submatrices obtained
from C and D, respectively, by selecting the α rows and all
columns. For each α it is

(Cx+Dz)α = Cα•x+Dααzα +Dαᾱzᾱ (22a)
(Cx+Dz)ᾱ = Cᾱ•x+Dᾱαzα +Dᾱᾱzᾱ. (22b)

By using the definition of the set α and the P-matrix property
of D, from (22a) since zᾱ = 0 one obtains

zα = −(Dαα)−1Cα•x (23a)
(Cx+Dz)ᾱ = Cᾱ•x+Dᾱαzα (23b)

for all α ∈ 2M. By using (23a) in (23b) we can define a
polyhedral cone Xα with the following H-representation

Xα = {x ∈ Rn : Φαx ≥ 0} (24)

with Φα ∈ Rm×n given by

Φα =

(
−(Dαα)−1Cα•

Cᾱ• −Dᾱα(Dαα)−1Cα•

)
. (25)

The vector z whose components zα ≥ 0 are given by (23a)
and zᾱ = 0, is a solution of the LCP (Cx,D) for all x ∈
Xα, by construction. Since D is a P-matrix this is the unique
solution of the LCP for a given x ∈ Xα. The cases α = ∅ and
α = M are included in (24)–(25). Some Xα can coincide,
but the set of distinct cones Xα defines a partition of the state
space as proved by the following result.

Lemma 9: The set of distinct polyhedral cones Xα with
α ∈ 2M defined by (24)–(25) provides a partition of Rn.

Proof: First note that ∪α∈2MXα = Rn. Indeed, let us as-
sume there exists some x̃ ∈ Rn with x̃ /∈ Xα, ∀α. Since D is a
P-matrix, there exists a unique solution z̃ of the LCP (Cx̃,D)
and by following the construction procedure described above
it is easy to get the existence of a corresponding Xα that
contradicts the hypothesis.

We now prove that the intersection of any pair of interiors
of Xα is empty. Note that for all pairs involving at least one
degenerate Xα the condition is trivially satisfied. Then let us
consider any α1 and α2 such that Xα1

6= Xα2
and they are not

degenerate. Say X̃α1
and X̃α2

the corresponding open cones
characterized by wα1 = 0, zα1 = −(Dα1α1)−1Cα1•x > 0,
zᾱ1 = 0, wᾱ1 = (Cᾱ1• − Dᾱ1α1(Dα1α1)−1Cα1•)x > 0 and
analogously for α2, i.e. wα2

= 0, zα2
> 0, zᾱ2

= 0, wᾱ2
> 0.

By contradiction we assume that there exists some x̃ ∈ X̃α1
∩

X̃α2
6= ∅. For such a x̃ we will get two corresponding solutions



zᾱ1
6= zᾱ2

. That contradicts the property that the solution of
the LCP is a singleton for all x ∈ Rn and thus Xα1 and Xα2

can only share a boundary, by construction.
When D is a P-matrix, the right-hand side of (10) is a

singleton and the differential inclusion can be rewritten as
a continuous ordinary differential equation in the conewise
linear form

ẋ = Aαx, x ∈ Xα, ∀α ∈ 2M (26)

where Aα = A − B•α(Dαα)−1Cα•, and from Lemma 9 the
set {Xα}α∈2M provides a partition of Rn.

Remark 10: The partition {Xα}α∈2M could contain non
full dimensional polyhedral cones. However such sets are
faces of other cones of the same partition. By removing these
degenerate cones, one obtains a (still complete) partition of the
state space for which all the possible local system dynamics
are included, thanks to the uniqueness of the solution. Then,
without loss of generality, we can exclude in (26) all cones
Xα that are not full dimensional.

We can now formulate the following stability sufficient
condition in terms of constrained LMI, whose solution directly
provides a continuous piecewise quadratic Lyapunov function
for the complementarity system.

Lemma 11: Consider the linear complementarity system
represented as in (10) with D being a P-matrix, {Xα}α∈2M

a partition of the state space with full dimensional polyhedral
cones defined by (24)–(25) and say Rα ∈ Rn×ρα the ray
matrix of a V-representation of the cone Xα . Then the
origin is exponentially stable if there exist {Pα,Mα, Nα}
with Pα ∈ Rn×n symmetric matrix, Mα ∈ Rρα×ρα and
Nα ∈ Rρα×ρα entrywise positive matrices such that

R>αPαRα −Nα < 0 (27a)

−R>αQPαRα −Mα < 0 (27b)

with QPα = A>αPα + PαAα, are satisfied together with

R>αiαj (Pαi − Pαj )Rαiαj = 0 (28)

for all pairs (αi, αj), with αi, αj ∈ 2M, such that Rαi and
Rαj have some common rays and Rαiαj is the matrix whose
columns are the common columns between Rαi and Rαj .

Proof: By Lemma 9 and Remark 10 we can consider
the conewise linear system (26). Choose the PWQ function
V (x) = x>Pαx, x ∈ Xα, α ∈ 2M, as a candidate Lyapunov
function. From (28) it follows that V (x) is continuous across
the cones boundaries and then it is continuous in the whole
state space. From (27a) and by using Lemma 1 it follows that
V (x) is strictly positive for all x ∈ Rn−{0}. From (27b) and
by using the analogous of Lemma 1 obtained by substituting
Pα with −(A>αPα +PαAα) it follows that V̇ (x(t)) is strictly
negative for all x ∈ Rn − {0}. By considering the finite
partitioning of Rn and that for any Xα the quadratic functions
x>Pαx and −x>QPαx are strictly cone copositive, following
the same arguments used in proving Lemma 4 and Theorem 5,
it is possible to show that there exist c0, c1, c2 > 0 such that
c1‖x‖2 ≤ V (x) ≤ c2‖x‖2 and V̇ (x(t)) ≤ −c0V (x(t)). From
the former inequalities it is clear that V (x) is radially un-
bounded. Moreover, from the last condition and by following

standard Lyapunov arguments it follows that any solution x(t)
of (26) goes exponentially to zero, which completes the proof.

B. PWQ-LF with D not P-matrix
When D is not a P-matrix, the well-posedness of the

LCS (2) is not anymore guaranteed, in general. Conditions for
the existence and uniqueness of solution in this case hold under
some structural assumptions on the LCS, see [2], [12], [17].
When it is not possible to write the system in the form (26)
with the polyhedral partition given by the cones in (24)-(25),
the stability problem of the origin of the system (10) is well
posed provided that solutions of the differential inclusion exist.

A stability condition based on a continuous PWQ-LF can
be obtained by using a polyhedral partition of the cone S ⊆
∂F . Consider a polyhedral partition {Sα}α∈2M and adopt an
approach similar to the case of D being a P-matrix. Consider
the two equality conditions (Cx + Dz)α = 0 and zᾱ = 0,
together with the two non strict inequality conditions (Cx +
Dz)ᾱ ≥ 0 and zα ≥ 0 with α ∈ 2M, M = {1, . . . ,m},
ᾱ = M− α. The feasibility set F is defined by (4)–(5), i.e.
(Cx+Dz) ≥ 0 and z ≥ 0. The zero components selected by α
can be represented by adding the inequalities Cα•x+Dα•z ≤
0 and zᾱ ≤ 0. Then, one can define the polyhedral cone Sα
with the H-representation

Sα = {ξ ∈ Rn+m |Γαξ ≥ 0} (29)

where Γα =
(

Γ
∆α

)
with ∆α =

(−Cα• −Dα•
0 −Iᾱ•

)
, and Iᾱ•

is obtained by selecting the ᾱ rows and all the columns
of the identity matrix. The set of distinct polyhedral cones
{Sα}α∈2M defined by (29) provides a partition of S because
∪α∈2MSα = S by construction and each Sα is a degenerate
cone being S a degenerate cone in Rn+m.

Say Rα ∈ R(n+m)×ρα the ray matrix of a V-representation
of the cone Sα. For the following matrix partition Rα =(
Rα,x
Rα,z

)
where Rα,x ∈ Rn×ρα and Rα,z ∈ Rm×ρα , define

Sα,x =
{
ξx ∈ Rn|ξx = Rα,xθ, θ ∈ Rρ+

}
and consider the

candidate Laypunov function

V (x) = x>Pαx, x ∈ Sαx . (30)

Note that the ∪Sα,x ⊆ Rn corresponds to the projection
of the solution set on the state space. We are now ready
to formulate the following stability sufficient condition in
terms of constrained LMI, whose solution directly provides
a continuous PWQ-LF for the complementarity system.

Lemma 12: Consider the differential inclusion (10) and
the partititon {Sα}α∈2M of the solution set S with Rα ray
matrix of Sα. The origin is exponentially stable if there exist
{Pα,Mα, Nα} and γ > 0 with Pα ∈ Rn×n symmetric
matrices, Mα ∈ Rρα×ρα entrywise nonnegative matrices and
Nα ∈ Rραx×ραx entrywise positive matrices, such that

R>α,xPαRα,x −Nα < 0 (31a)

−R>α
(
QPα + γ

(
I 0
0 0

))
Rα −Mα < 0 (31b)

with
QPα =

(
A>Pα + PαA PαB

B>Pα 0

)
(32)



are satisfied together with the continuity condition

R>(αi,x)(αj ,x)(Pαi − Pαj )R(αi,x)(αj ,x) = 0 (33)

for all pairs (αi, αj) such that Rαi,x and Rαj ,x have some
common rays and R(αi,x)(αj ,x) is the matrix whose columns
are the common columns between Rαi,x and Rαj ,x.

Proof: Conditions (33) ensure the continuity of (30) for
all x such that (x, SOL(Cx,D)) ∈ S. In particular, (30) takes
the same values for all x in the possibly overlapping regions
between say Sαi,x and Sαj ,x.

From (31a) it follows that the function (30) is strictly
positive in each cone Sα,x and therefore for each x such that
(x, SOL(Cx,D)) ∈ S . By considering that 〈∇xV (x), Ax +
Bz〉 = ξ>QPαξ, ξ = ( xz ), from (31b) it follows that

〈∇xV (x), Ax+Bz〉 ≤ −γ‖x‖2, (34)

for all x ∈ Sα,x, for all z = SOL(Cx,D) and for all α ∈ 2M.
Thus, by looking at the differential inclusion (10) with the

Lyapunov function (30) and by applying (34) and Theorem 4.1
in [14] to any solution x(t) of (10), the exponential stability
of the origin of the system (10) is proved.

VI. EXAMPLES

Consider Example 3.1 in [4] whose matrices corresponding
to the model (2) are A = 1, B = ( 2 −2 ), C =

(
1
−1

)
, D =

( 1 3
0 1 ), and Example 3.2 in [4] whose matrices are A = −1,
B = ( 0 1 ), C = ( 1

1 ), D = ( 1 3
0 1 ). We were able to find

a solution for (12) and then the asymptotic stability of the
origin for each system follows from Lemma 4. Note that in our
approach, differently from [4], it is not required to enumerate
the different modes.

Consider the Example 3.3 in [4] which is shown to not
admit a common quadratic Lyapunov function. The matrices
(A,B,C,D) of the model (2) are(−5 −4 0

−1 −2 0
0 0 1

)
,
( −3 0 0
−21 0 0

0 2 −2

)
,
(

1 0 0
0 0 1
0 0 −1

)
,
(

1 0 0
0 1 3
0 0 1

)
,

respectively. Since D is a P-matrix in order to prove stability
we can use the procedure in Sec. V-A. By applying (25) the
following polyhedra Xα are obtained: X{∅} = X{2,3} = {x1 ∈
R+, x2 ∈ R, x3 = 0}, X{1} = X{1,2,3} = {−x1 ∈ R+, x2 ∈
R, x3 = 0}, X{2} = {x1 ∈ R+, x2 ∈ R,−x3 ∈ R+}, X{3} =
{x1 ∈ R+, x2 ∈ R, x3 ∈ R+}, X{1,2} = {−x1 ∈ R+, x2 ∈
R,−x3 ∈ R+}, X{1,3} = {−x1 ∈ R+, x2 ∈ R, x3 ∈ R+}.
The ray matrices Rα can be easily derived by choosing ρα = 4
for all α.

It is not difficult to derive the dynamic matrices of the
different modes and then, differently from [4], we were able
to obtain a PWQ-LF directly by applying Lemma 11 whose
LMI provide the following matrices(

0.4035 −0.1692 0.3763
−0.1692 0.6660 0.0635
0.3763 0.0635 3.6055

)
,

(
3.0101 0.1421 0.5671
0.1421 0.6660 −0.0635
0.5671 −0.0635 3.6055

)
,(

0.4035 −0.1692 −0.3763
−0.1692 0.6660 −0.0635
−0.3763 −0.0635 3.6055

)
,
(

3.0101 0.1421 −0.5671
0.1421 0.6660 0.0635
−0.5671 0.0635 3.6055

)
,

for P{∅} = P{3} = P{2,3}, P{1} = P{1,2} = P{1,2,3}, P{2}
and P{1,3}, respectively.

We now analyze an example with D not P-matrix. Let
us consider the second order LCS with A =

(−1 −1
0 −1

)
,

B = −A, C identity matrix and D zero matrix. By phase
plane analysis, one can verify that for any initial condition in
the first quadrant, the state trajectory is unique and converges
exponentially to zero. The cones Sα and Sαx can be easily
derived by modes enumeration. By applying Lemma 12 we
obtained the following solution

P{∅} =
(

1 −2
−2 5

)
, P{1} =

(
2 −1
−1 5

)
, P{2} =

(
1 −3
−3 4

)
.

VII. CONCLUSION

The feasibility and solution sets of LCS have been repre-
sented by means of suitable cones. Then, sufficient exponential
stability of the origin of the LCS have been proposed by
formulating cone-copositive problems. The solution of corre-
sponding sets of LMI lead to quadratic and piecewise quadratic
Lyapunov functions able to prove the exponential stability of
the origin in LCS. Examples demonstrate the effectiveness of
the proposed approach.

REFERENCES

[1] A. J. van der Schaft and J. M. Schumacher, “Complementarity modelling
of hybrid systems,” IEEE Trans. on Automatic Control, vol. 43, no. 4,
pp. 483–490, 1998.

[2] M. K. Camlibel, L. Iannelli, and F. Vasca, “Passivity and complemen-
tarity,” Mathematical Programming, Series A, vol. 145, no. 1–2, pp.
531–563, 2014.

[3] K. Camlibel, J. S. Pang, and J. Shen, “Conewise linear systems: non-
Zenoness and observability,” SIAM Journal of Control Optimization,
vol. 45, no. 5, pp. 1769–1800, 2006.

[4] M. K. Camlibel, J. S. Pang, and J. Shen, “Lyapunov stability of
complementarity and extended systems,” SIAM Journal of Optimization,
vol. 17, no. 4, pp. 1056–1101, 2006.

[5] J. J. B. Biemond, W. Michiels, and N. van de Wouw, “Stability analysis
of equilibria of linear delay complementarity systems,” IEEE Control
Systems Letters, vol. 1, no. 1, pp. 158–163, 7 2017.

[6] D. Goeleven and B. Brogliato, “Stability and Instability Matrices for
Linear Evolution Variational Inequalities,” IEEE Trans. on Automatic
Control, vol. 49, no. 4, pp. 521–534, 4 2004.

[7] R. Iervolino, F. Vasca, and L. Iannelli, “Cone-copositive piecewise
quadratic Lyapunov functions for conewise linear systems,” IEEE Trans.
on Automatic Control, vol. 60, no. 11, pp. 3077–3082, Nov 2015.

[8] R. Iervolino, D. Tangredi, and F. Vasca, “Lyapunov stability for piece-
wise affine systems via cone-copositivity,” Automatica, vol. 81, no. 7,
pp. 22–29, 2017.

[9] D. Avis, K. Fukuda, and S. Picozzi, “On canonical representations of
convex polyhedra,” in Mathematical Software, A. M. Cohen, X.-S. Gao,
and N. Takayama, Eds. Singapore: World Scientific, 2002, pp. 350–359.

[10] R. W. Cottle, J. S. Pang, and R. E. Stone, The Linear Complementarity
Problem. Boston: Academic Press, 1992.

[11] R. T. Rockafellar and R. J. B. Wets, Variational Analysis, 3rd ed.
Springer Science & Business Media, 2010.

[12] B. Brogliato and D. Goeleven, “Well-posedness, stability and invariance
results for a class of multivalued Lur’e dynamical systems,” Nonlinear
Analysis: Theory, Methods & Applications, vol. 74, pp. 195–212, 2011.

[13] K. M. Camlibel and J. M. Schumacher, “Linear passive systems and
maximal monotone mappings,” Mathematical Programming, vol. 157,
no. 2, pp. 397–420, 2016.

[14] A. Bacciotti and L. Rosier, Liapunov functions and stability in control
theory. Berlin, Germany: Springer, 2005.

[15] D. de S. Madeira and J. Adamy, “On the equivalence between strict
positive realness and strict passivity of linear systems,” IEEE Trans. on
Automatic Control, vol. 61, no. 10, pp. 3091–3095, 2016.

[16] M. Johansson and A. Rantzer, “Computation of piecewise quadratic
Lyapunov functions for hybrid systems,” IEEE Trans. on Automatic
Control, vol. 43, no. 4, pp. 555–559, 1998.

[17] B. Brogliato and L. Thibault, “Existence and uniqueness of solutions
for non-autonomous complementarity dynamical systems,” Journal of
Convex Analysis, vol. 17, no. 3–4, pp. 961–990, 2010.


