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Abstract—In recent years, the complementarity formalism has

been shown to be an interesting framework for the mathematical

representation of a large class of power converters. In this

paper, the complementarity model of a resonant LLC power

converter is presented. The model usefulness is demonstrated for

the identification of the circuit parameters and for the numerical

analysis of the stationary behavior. The comparison between

experimental measurements and numerical results shows the

efficacy of the proposed approach.
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behavior; complementarity models.

I. INTRODUCTION

The resonant LLC converter is an emerging topology to
meet the high efficiency and power density requirements
necessary in industrial applications, see among the others [1]–
[3]. The computation and analysis of the steady-state behavior
in power converters is a critical issue [4]–[6] since it requires
to know the operating modes sequence and the switching time
instants. For resonant converters, the steady-state analysis is
often carried out by an extensive enumeration and description
of all the operating conditions [4], [7], [8]. The electronic
switches states lead to different circuit topologies, i.e. the so-
called modes. The concatenation procedure of the correspond-
ing dynamic models is quite costly as the number of switches
can be high. Moreover, the resulting model is usually in a non
explicit form due to the switching conditions, which represent
time- and state-dependent algebraic constraints.

In the seminal work [9], linear complementarity models
have been used to build a compact representation of power
converters. Such class of models is simple to be built and
does not require the a priori knowledge of the converter
modes nor the switching time instants. In fact, a unique
mathematical model describes the power converter behavior in
all operating conditions. Complementarity models have shown
to be effective in capturing the dynamic behavior of power
converters [10]–[13]. Moreover, the steady-state solution of the
discretized complementarity model can be directly computed
without fixing the sequence of modes, which is not known, for
instance, when diodes influence the circuit behavior, such as
in discontinuous conduction mode [11], [12]. Specific conven-
tional open-loop power converters topologies such as single-
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Figure 1. An equivalent circuit of the resonant LLC power converter
considered in this paper.

phase diode bridges [14], three-phase rectifiers [15], and res-
onant converters [11] have been modeled and analyzed within
the complementarity framework. Recently, those models have
been extended also to closed-loop power converts such as Čuk
converter [16], Z-converter [12], buck-boost converter [17]
and single-phase multilevel converters [18]. In the literature,
the numerical solution of complementarity models is usually
compared with the solution of other solvers without proposing
experimental validations. In this paper, by considering a dedi-
cated resonant LLC converter prototype, several comparisons
with experimental results show the effectiveness of the com-
plementarity model. It is worthy to mention that the proposed
procedure can be applied to derive complementarity models of
more complex circuit topologies too, e.g. by considering linear
sub-circuits which model the effects of parasitic elements and
piecewise linear characteristics of electronic devices [9]. We
decided to maintain a compromise between the complexity of
the model, without introducing many circuit details, and the
fidelity in reproducing the experimental results in a sufficiently
wide range of different operating conditions. As a further
original contribution, the use of these models for parameters
identification based on the steady-state response is proposed.

The paper is organized as follows. In Section II, the dynamic
model of the LLC converter and the complementarity problem
providing its steady-state solution are presented. The experi-
mental prototype is described in Section III and the parameters
identification in Section IV. The effectiveness of our approach
for the steady-state analysis is discussed in Section V. The
conclusions are reported in Section VI.

II. COMPLEMENTARITY MODEL OF LLC CONVERTER

In this section, we derive the dynamic complementarity
model of the resonant LLC converter shown in Fig. 1. The
discretized model is then combined with periodicity condi-
tions thus obtaining a mixed linear complementarity problem
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(MLCP) whose solution provides the steady-state evolution of
the power converter electrical variables.

A. Dynamic model

Let us consider the resonant LLC power converter in Fig. 1.
The two switches S1 and S2 are controlled in anti–phase
with a switching frequency f

s

. The modulation determines a
square wave voltage v

in

with amplitude V

dc

. The capacitor C1

and the inductors L1 and L2 constitute a resonant circuit. A
transformer is used to connect the resonant circuit to a diode
rectifier, which is usually operated in discontinuous conduction
mode. The ideal transformer relations v1 = nv2 and i2 = ni1

are used. By applying the Kirchhoff laws, one obtains
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where Dx stands for the time derivative of x. Let us introduce
the vectors z> = (i

D1 iD2) and w

> = (�v
D1 �vD2), the input

u = v

in

and the state vector x

> = (i
L1 vC1 iL2 vC2 vC3 vC4).

Then, (1) can be rewritten in the matrix form
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where x 2 R6, u 2 R, z 2 R2 and w 2 R2, and A
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c

, D
c

, E
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are real matrices of suitable dimensions.
The complementarity model of the circuit is obtained by
combining (2) with the complementarity representation of
the diodes characteristics. An ideal diode model corresponds
to a conducting mode when its current i

D

is positive with
zero voltage, whereas it is blocking when the opposite of its
voltage, i.e. �v

D

, is positive with zero current. Then, each
ideal diode characteristic can be completely represented by the
so-called complementarity condition 0  (�v

D

) ? i

D

� 0,
where �v

D

and i

D

are called complementary variables and the
symbol ? represents the orthogonality constraint �v

D

i

D

= 0.
By considering the two pairs of diodes variables in (1), the
complementarity conditions of these two electronic devices
can be written in the vector form

0  w ? z � 0, (3)

where the orthogonality is meant componentwise, i.e. w
i

=
�v

Di � 0, z

i

= i

Di � 0 and w

i

z

i

= 0 for i = 1, 2.
The set of expressions (2)–(3) is a continuous-time linear
complementarity system. It represents in a compact form any
mode of the power converter, i.e. it holds independently of the
conducting or blocking states of the diodes and for continuous
and discontinuous conduction modes too [12]. Moreover, this
model allows one to directly compute the steady-state solution
without assuming the knowledge of modes sequence. This is
shown in the following section.

B. Steady-state solution

In ordinary operating conditions, the input v
in

of the res-
onant power converter is periodic of period T

s

= 1/f
s

and
the state variables show a periodic behavior with a period that
is a multiple of the external forcing: in other words, we have
subharmonics in the state [19]. Thus, in order to obtain the
control-to-output frequency response, the input v

in

is assumed
to be periodic with period ↵T

s

, ↵ being a suitable integer.
The first step for the numerical computation of the resonant

converter steady-state response consists of discretizing (2)–
(3). Let us consider a sampling period, say h. Without loss of
generality one can assume h = ↵T

s

/N , where N is a positive
integer. The continuous-time state derivative at the time instant
kh with k = 1, 2, ... can be approximated as Dx ' (x

k

�
x

k�1)/h, where x

k

is the k-th sample of the discretized model
vector state. Then, by using the backward Euler discretization
technique with sampling period h, from (2)–(3) one obtains
the following discrete-time system
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c

, and k being
positive. At each time-step k, given x

k�1 and u

k

, the set of
expressions (4) is an MLCP in terms of unknown (x

k

, z

k

)
whose solution can be obtained by using the well-known PATH
solver [12]. Then, starting from a given x0 and the knowledge
of the input u

k

for k = 1, 2, ..., the whole state evolution can
be obtained by iteratively solving for k = 1, 2, ... the sequence
of MLCPs (4).

Since v

in

is periodic of period ↵T

s

, from the definition of
h given above, the sampled discrete-time input u

k

is periodic
of period N . A big MLCP for the computation of the steady-
state solution can be obtained by collecting in a vector form
the expressions (4) for k = 1, 2, ..., N and by replacing x0

with x

N

in (4a) for k = 1, thus exploiting the periodicity
assumption x0 = x

N

. Let us define x̄ = vec({x
i
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operator. Then, the set of (4) for k = 1, ..., N with x0  x

N

can be written as the following big MLCP:
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where the block circulant matrix Ā is defined as
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being the N -dimensional identity
matrix and the symbol ⌦ indicating the Kronecker product.
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The solution (x, z) of the MLCP (5) provides directly the
evolution of the converter state variables at steady-state. Note
that alternative discretization schemes could be used without
affecting the validity of the proposed procedure, just requiring
to modify accordingly the matrices in (5). In most cases,
the backward Euler discretization technique is preferred for
complementarity systems due to its stability property [14].

III. EXPERIMENTAL PROTOTYPE

An experimental prototype shown in Fig. 2 has been built
to validate the linear complementarity model. The converter
is sized for 5 kW and the nominal operating characteristics,
referred to the converter working at the resonance frequency
are: input voltage 84V, input current 60A, output voltage
28V, and output current 180A. The resonance frequency
has been fixed at 110 kHz and the converter can work up to
300 kHz in order to regulate the output voltage in wide ranges
of the input voltage and load. The nominal circuit parameters
are: L1 = 1.24 µH, C1 = 2.2 µF, C3 = 35.2 µF, and
C4 = 35.2 µF. The parameters L2 and C2 will be identified
in next section.

The inductance L1 represents the sum of the transformer
leakage inductance and the external resonance inductance of
Fig. 2(c). The transformer in Fig. 2(d) is custom made and
the main parameters considered for the transformer design
are the reduction of losses, weight and volume. A strong
interleaved method in the coil arrangement was used following
the procedure described in [2]. The final transformer design
provided the following parameters: transformer turn ratio
n = 3; core material 3C94; core shape E43/10/28; insulator
is polymide; insulation thickness 0.025mm; copper thickness
primary 0.45mm; copper thickness secondary 1.35mm; in-
terleaving scheme is 0.5P, S, P, S, P, S, 0.5P.

One of the most critical components of the LLC converter
is the resonant capacitor C1 placed in series to the circuit and
working with the nominal current. The current is responsible
of the temperature increasing due to the Joule effect. The
high temperature may destroy the capacitor if it reaches
the dielectric limits. For this reason, low series resistance
capacitor is required for the application. Another limit is
given by the voltage that must be always under the dielectric
limits. Furthermore, the capacitance value may change with
the temperature, making the converter parameters temperature
dependent. All the above mentioned limits have been solved by
selecting the NPO (COG) ceramic capacitor that can work up
to 10MHz with small losses, small temperature dependence,
high working voltage and with no aging. A custom capacitor
construction has been adopted to select the best devices on
the market. The capacitor prototype is shown in Fig. 2(b) and
is obtained by paralleling 100 small capacitors, each working
with a fraction of the total current.

The driver dsPIC33FJ16GS504 was used to generate the
PWM signal at the desired frequency. The DSP configurations,
e.g. PWM frequency, duty cycle and dead time, can be changed
during the tests via the RS232 serial communication. For
measurements accuracy a wide band oscilloscope and current
sensor (CWT06B 50mV/A 120A POWERTEK) was used.

Figure 2. Experimental 5 kW prototype. (a) Half bridge (b) resonant capacitor
(c) resonant inductor (d) transformer (e) rectifier. Size: 17x10 cm.

IV. PARAMETERS IDENTIFICATION

In this section, we show how the parameters L2 and
C2 have been identified by exploiting the proposed model.
The elements L2 and C2 cannot be considered properly as
lumped circuit representations of physical elements, because
they also synthesize complex unmodeled parasitic elements. In
particular, the parasitic phenomena related to the transformer
magnetization inductance L2 are due to the busbar capacitance,
the proximity and skin effect losses. The capacitor C2 includes
effects of winding and diode capacitance. These phenomena
could be modeled by using complex equivalent circuits. How-
ever, by neglecting the parasitic elements, one can reduce
the circuit complexity to the one considered in Fig. 1, with
frequency-dependent parameters.

Measurements of the input voltage, the current through the
inductor L1, and the voltage across the two input inductors
have been performed at steady-state conditions with different
switching frequencies. The data acquisition was performed
with a sampling period equal to 0.2 ns. The measured signal
v

in

(resampled at 20 ns) was used as input for the MLCP (5).
Then the physical circuit and the mathematical model have the
same input waveform.

We considered twenty values for L2 and C2 in the in-
tervals [3, 50]µH and [1, 40]nF, respectively. For each pair
(L2, C2), we computed the steady-state solution by solving
the corresponding MLCP (5) at each switching frequency. We
computed the root mean square error (RMSE) for the current
through the inductor L1 as follows:

RMSE =

vuut 1

N

NX

k=1

k̂ik
L1
� ī

k

L1
(L2, C2)k2, (6)

where î

k

L1
is the k-th sample (with respect to a chosen initial

phase) of the measured current, īk
L1
(L2, C2) is the k-th sample

of the computed inductor current, and N is the period of
the discrete-time input signal. In Fig. 3, we show the RMSE
map at the switching frequency f

s

= 100 kHz. The red star
represents the optimal point corresponding to the computed
optimal values (L⇤

2, C
⇤
2 ).

In Table I, for each pair of parameters values (L⇤
2, C

⇤
2 ),

which are optimal for a selected frequency, we computed the
RMSE for i

L1 , when this pair of parameters is considered for
computing the steady-state solution at different frequencies.
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Figure 3. Root mean square error map for the current i
L1 by varying L2

and C2 at f
s

= 100 kHz.

Table I
RMSE FOR THE CURRENT THROUGH THE INDUCTOR L1 .

(L⇤
2, C

⇤
2 ) at f RMSE for i

L1
80 kHz 100 kHz 200 kHz 300 kHz

(36 µH, 1 nF)@80 kHz 0.670 4.58 2.22 3.40
(9.6 µH, 1 nF)@100 kHz 2.60 1.10 4.26 3.73
(48 µH, 17 nF)@200 kHz 1.66 2.30 0.236 0.842
(38.4 µH, 31 nF)@300 kHz 1.82 2.09 0.680 0.243

On the main diagonal of the above table, we highlighted the
optimal value corresponding to each of the four frequencies.

V. STEADY-STATE BEHAVIOR

In this section, we provide a validation of the complemen-
tarity model for the computation of the converter steady-state
solution by comparing numerical and experimental results for
different switching frequencies and load resistances.

Figure 4 shows the comparison between the experimental
measurements (continuous blue line), MLCP (dashed red line)
and PLECS steady-state solutions (dash-dotted green line) at
f

s

= 80 kHz and f

s

= 100 kHz. The RMSE for the current
i

L1 computed between the measured current and PLECS
results when f

s

= 100 kHz is 5.39, whereas it is 1.10
when MLCP solution is considered, so as shown in Table I.
MLCP results are very close to the measurements. That is
a first validation of the effectiveness of the complementarity
approach, which accurately captures the converter steady-state
behavior. The cpu time for computing the steady-state solution
at f

s

= 80 kHz with h = 0.025 µs is around 0.35 s on an Intel
Core i7 2.40GHz. This value is comparable to that required by
PLECS/Steady-State Analysis Tool, which is around 0.33 s. It
is important to mention here that MLCP steady-state solution
is computed by applying the exact periodicity constraint,
whereas in PLECS a relative error of 10�8 is selected.

Let us consider the input current i

Vdc by assuming (it is
an ideal behavior) that it coincides with i

L1 when the switch
S1 is conducting and it is zero when S2 is turned on. The
spectra of the currents i

L1 and i

Vdc in Fig.s 5(a) and 5(b)
show that the complementarity model efficiently reproduces
the experimental converter behavior.
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Figure 4. Comparison between the experimental results (continuous blue line),
MLCP steady-state solution (dashed red line) and PLECS steady-state solution
(dash-dotted green line) : (a) V

dc

= 60.6V, R = 1.7⌦, f
s

= 80 kHz. (b)
V
dc

= 40V, R = 1⌦, f
s

= 100 kHz.

A further validation is made through the converter input-
output characteristic. Define the voltage ratio as V

out

/V

dc

,
where V

out

is the average value over the period T

s

of the
output voltage at steady-state. Experimental measurements of
the voltage ratio for different values of the switching frequency
in the interval between 80 kHz and 300 kHz were performed.
In Fig. 6, we report the comparison of the experimental values
with MLCP and PLECS steady-state solutions for two different
values of the output resistor. Instead of using the different
pairs (L⇤

2, C
⇤
2 ), we fixed these parameters to the mean of their

optimal values at the different frequencies. In this case in the
MLCP models, a constant voltage drop has been used for each
diode. MLCP results fit quite well the measurements. It should
be noticed that PLECS steady-state tool requires small series
resistors at the transformer output and in series with L1 and C2

in order to get the convergence, whereas this is not necessary
for computing MLCP solutions.

VI. CONCLUSION

The complementarity theory has been applied for modeling
a resonant LLC power converter. This mathematical represen-
tation catches the converter behavior in all operating modes
and allows one to directly compute the steady-state converter
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solution in a short computational time and by considering the
exact periodicity constraint. An experimental prototype was
built to validate the model and a comparison with experimental
results have shown that the complementarity model accurately
predicts the converter behavior. Mixed linear complementarity
problems have been shown to be a powerful tool for the
frequency dependence analysis of the circuit parameters and of
the power converter input-output behavior. Linear complemen-
tarity systems provide a compact representation which could

be further exploited for the converter design. Directions of
future research are the use of these models for the analysis of
system’s properties, e.g. stability, controllability, observability,
for the control design of power converters and for their
analysis in the presence of nonlinear components.
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