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CrazyS: a software-in-the-loop platform
for the Crazyflie 2.0 nano-quadcopter

Giuseppe Silano, Emanuele Aucone and Luigi Iannelli

Abstract— In this paper we propose CrazyS, an extension of
the ROS (Robot Operating System) package RotorS, aimed
to modeling, developing and integrating the Crazyflie 2.0
nano-quadcopter in the physics based simulation environment
Gazebo.

Such simulation platform allows to understand quickly the
behavior of the flight control system by comparing and evaluat-
ing different indoor and outdoor scenarios, with a details level
quite close to reality. The proposed extension expands RotorS
capabilities by considering the Crazyflie 2.0 physical model and
its flight control system, as well.

A simple case study has been considered in order to show
how the package works. The use of open-source software makes
the platform available for scientific and educational activities.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs), although originally
designed and developed for defense and military purposes
(e.g., aerial attacks or military air covering), during the
last years gained increasing interest and attention related
to civilian use. Nowadays, UAVs are employed for several
tasks and services like surveying and mapping [1], for rescue
operations in disasters [2], for buildings inspection [3],
geophysics exploration [4], traffic monitoring [5], animal
protection [6], agricultural crops [7].

Many existing algorithms for the autonomous control [8],
[9] and navigation [10] are provided in the literature, but
it is particularly difficult to make the UAVs able to work
autonomously in constrained and unknown environments or
also indoor. Thus, it follows the need for tools that allow
to understand what it happens when some new applications
are going to be developed in unknown or critical situations.
Simulation is one of such helpful tools, widely used in
robotics [11], [12], and whose main benefits are costs and
time savings, enabling to carry out and to study complex
missions that might be time consuming and risky in real
world. Furthermore, bugs and mistakes in simulation cost vir-
tually nothing: it is possible to crash a vehicle several times
and thereby getting a better understanding of implemented
methods under various conditions. To this aim, simulation
environments are able to manage the complexity and het-
erogeneity of the hardware and applications, to promote the
integration of new technologies, to simplify software design,
to hide the complexity of low-level communication [13].

Different solutions, typically based on external robotic
simulators such as Gazebo [14], V-REP [15], AirSim [16],
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Fig. 1. The Crazyflie 2.0 nano-quadcopter.

are available to this purpose. They employ recent advances
in computation and graphics (e.g., the AirSim photorealistic
environment [17]) in order to simulate physical phenomena
(gravity, magnetism, atmospheric conditions) and perception
(e.g., providing sensor models) in such a way that the
environment realistically reflects the actual world. Definitely,
it comes out that complete software platforms able to test
different algorithms for UAVs moving in a simulated 3D
environment are becoming more and more important.

In this paper it is described CrazyS, a software package
for modeling, developing and integrating the dynamics and
the control architecture of the nano-quadcopter Crazyflie 2.0
(Fig. 1) in the Gazebo simulator. CrazyS is based on the
Micro Aerial Vehicles (MAVs) simulation framework Ro-
torS [18] and such contribution illustrates how it is possible
to expand the functionalities of the simulation platform in
the UAV field, by facilitating the development of different
control strategies before testing them on a real platform,
possibly with few changes, thanks to software-in-the-loop
methodologies [9].

The chosen aircraft, the Crazyflie 2.0, is available on
the market for less than $200 and it is ideal for many
research areas (e.g., large swarm [19], path planning [20],
mixed reality [21], etc.). The source code and the hardware
are open, making it possible to go through any part of
the system for complete control and full flexibility. New
hardware and sensors can be linked through the versatile
expansion ports, enabling the addition of the latest sensors.
The small size and light weight reduce the need for safety
equipment and increase the productivity. For all such reasons
it appears valuable to have a realistic and detailed simulator
of the Crazyflie dynamic behavior, with the possibility of
validating in an easy way the effects of modifying the control
architecture for complex missions.
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II. SYSTEM DESCRIPTION

The focus of this section is to describe how the CrazyS
simulator works, including ROS and Gazebo, by considering
an illustrative application, i.e., the hovering example. An
overview of the main components is represented in Fig. 2
while further details can be found in [18].

All the components of the nano-quadcopter are simulated
by Gazebo plugins and the Gazebo physics engine. The body
of the aircraft consists of four rotors, which can be placed
in any location allowing configuration changes (e.g., from
“+” to “×”, see Sec. III), and some sensors attached to
the body (e.g., gyroscope, accelerometer, camera, barometer,
etc.). Each rotor has properly dynamics and accounts for the
most dominant aerodynamic affects. Also external influences
can be taken into account, such as a wind gust, but they are
neglected in our case study.

To facilitate the development of different control strate-
gies, a simple interface is provided. We developed a position
control, but various are the solutions that can be used. Indeed,
the simulator has to be meant as a starting point to imple-
ment more advanced control strategies for the Crazyflie. A
further building block is the state estimator, used to obtain
information about the state of the drone. While it is crucial
on a real quadcopter, in simulation it can be replaced by a
generic (ideal) odometry sensor (with or without noise and
bias). In other words, the position, orientation, linear and
angular velocities of the Crazyflie are directly provided by
a Gazebo plugin. Section V illustrates results obtained when
the aircraft sensors, i.e., accelerometer and gyroscope, are
integrated in the loop.

All such features make the tool potentialities endless. Once
the Crazyflie is flying, higher level tasks can be carried out
and tested in the simulation environment, such as simultane-
ous localization and mapping (SLAM) [22], planning [23],
learning [24].

In order to simulate a scenario close to the real world,
we started from one of the available examples in RotorS
(specifically the mav hovering example.launch) describing a
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Fig. 3. Graph of ROS nodes (ellipses) and topics (squares) of the minimal
hovering example with the Crazyflie 2.0. The continuous line arrows are
topic subscription, with direction going from the subscriber node the the
publisher one.

quite detailed model of drone dynamics relative to an aircraft
taking off and keeping indefinitely an hovering position.

Thus, we cast the model and control parts to that of the
nano-quadcopter by taking into account the components of
the simulation framework (see Fig. 2), the Crazyflie physical
dynamics and parameters, and the perception sensors: the
aim was to create a simulation environment that correctly
describes the drone behavior. The overall scheme is depicted
in Fig. 3 where the employed topics and nodes, parts of
the structure of a ROS network, are represented. The whole
process is the following: the desired position coordinates (xr,
yr, zr, ψr) are published by the hovering example node on the
topic command/trajectory, to whom the position controller
node (i.e., the Crazyflie controller) is subscribed. The drone
state (odometry sensor1/odometry topic) and the references
are used to run the control strategy designed for the position
tracking. The outputs of the control algorithm consists into
the actuation commands (ω1, ω2, ω3 and ω4) sent to Gazebo
(command/motor speed) for the virtual rendering, so to up-
date the aircraft position and orientation.

III. MODEL DESCRIPTION AND SIMULATION

In RotorS (and, thus, in CrazyS), the drone is described
by an Xacro file [25], i.e., an eXtensible Markup Language
(XML) which is used to generate a more readable and often
shorter XML code. The XML tag structure allows to set
properties that are related to the physical features of the
drone. Such structure has been used to describe the Crazyflie
components and properties, i.e., the motors, the propellers,
the mass of the vehicle, and so on.

Conversely, the robot geometry has been modeled by using
the open-source software Blender. Starting from the mesh
file available from [26], the propellers geometry has been
changed from a “+” configuration (Crazyflie 1.0) to a “×”
configuration (Crazyflie 2.0).

In order to develop a simulation environment as close
as possible to the real platform, we also modeled the on-
board Inertial Measurement Unit (IMU MPU−9250, [27]) as
explained in [28]. In CrazyS, the measurements are modeled
by two types of sensor errors affecting both the angular rate



Sym. Unit Value
Gyroscope
White noise density nω rad/s/

√
Hz 0.000175

Random walk bω rad/s2/
√

Hz 0.0105
Bias correlation time btω s 1000
Turn on bias sigma bω0 rads−1 0.09
Accelerometers
White noise density na m/s2/

√
Hz 0.003

Random walk ba m/s3/
√

Hz 0.18
Bias correlation time bta s 300
Turn on bias sigma ba0 ms−2 0.588

TABLE I
SUMMARY OF THE IMU MODEL PARAMETERS.

measurement ω̃ and the linear acceleration ã, computed as:

ω̃(t) = ω(t)+bω(t)+nω(t) (1a)
ã(t) = a(t)+ba(t)+na(t), (1b)

where n•(t) is an additive noise term that fluctuates very
rapidly (the white noise) and b•(t) is a slowly varying sensor
bias. All gyroscope and accelerometer axis measurements are
modeled, independently. Table I summarizes all the model
parameters and links them to the entries in the Xacro file.
The accelerometer and gyroscope noise densities are easily
recovered from the MPU−9250 datasheet. Instead, the bias
part of the model (the “random walk”) is rarely specified
into datasheets and it can be characterized as

b• = σ
√

T , (2)

if they are available σ , i.e., the rate noise density (aka
spectral noise density), and T , i.e., the time period over
which the idealized white noise process is integrated.

Finally, the turn on bias and the bias correlation time refer
to the bias value originated when the inertial sensor turns on,
and its time constant, respectively.

A. Dynamical model

The design of a flight control system for the quadcopter
can be carried out through different approaches, from basic
heuristic techniques to more advanced model based methods.
Certainly, the latter ones exploit an accurate dynamical
model of the plant, however also classical PID controllers
might benefit from a detailed model. Indeed, after having
defined the control structure possibly implemented through
PID regulators, the tuning procedure could be based on
a mathematical model of the process rather than working
directly on the real plant, thus avoiding all problems (in terms
of time, safety, costs) related to experimentally based calibra-
tion. Such model has been used in our work in the twofold
way: firstly it has been employed for tuning heuristically (by
looking at numerical simulations) the controller gains, and
then for verifying the developed platform, by comparing sim-
ulation results with the outcome of the model implemented
in Matlab/Simulink. In this way implementation details like
C++ programming, controller discretization, concurrency,
communication issues, can be isolated by looking at the
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Fig. 4. Crazyflie in the body-frame (OABC) and the fixed-frame (OFI)
reference system. The forces from each rotors, the spin direction and the
propellers velocity ωi are also reported.

Matlab/Simulink results and, furthermore, their effects can
be investigated by considering the CrazyS simulations.

The dynamical model is derived in the usual way by in-
troducing two reference systems: the fixed-frame OFI (where
FI stands for Fixed Inertial), also called inertial frame, and
the body-frame OABC (where ABC stands for Aircraft Body
Center) that is fixed in the aircraft center of gravity and
oriented according to the aircraft attitude, see Fig. 4.

According to [29], the forces (eqs. (3) and (4)) and
momentum (eqs. (5) and (6)) equations can be derived. Such
model consists of nine equations for the system dynamics
and four describing the inputs to the system (eqs. (7) and (8))
where c•, s• and t• denote cos(·), sin(·) and tan(·) functions,
respectively. ẋd

ẏd
żd

= RT

ud
vd
wd

 (3)

 u̇d
v̇d
ẇd

=

 0
0

Fz/m

−R

0
0
g

−
pd

qd
rd

×
ud

vd
wd

 (4)

ṗd
q̇d
ṙd

= J−1

Mx
My
Mz

−
pd

qd
rd

×J

pd
qd
rd

 (5)

 φ̇d
θ̇d
ψ̇d

=

1 sφd tθd cφd tθd
0 cφd −sφd
0 sφd/cθd

cφd/cθd

pd
qd
rd

 ,θd 6= π/2. (6)

The equations (3) and (6) describe the linear and angular
velocities of the aircraft along x, y and z-axis in the OFI
frame, respectively. RT is the rotation matrix from the body
to the inertial frame. The Euler angles (ψd , θd and φd)
are defined according to the ZY X convention [30]. The
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remaining six equations (eqs. (4) and (5)) describe the UAV
linear and angular accelerations in the OABC frame. The
diagonal matrix J has the inertia of the body about the x,
y and z-axis, respectively, while m is the total mass of the
quadcopter and g the gravitational constant.

The system inputs are reported in eqs. (7) and (8), where
ω1, ω2, ω3 and ω4 represent the rotors angular velocities
expressed in rads−1:

Fz =CT
(
ω

2
1 +ω

2
2 +ω

2
3 +ω

2
4
)
, (7)

M =

Mx
My
Mz

=
1√
2

 CT d
(
−ω2

1 −ω2
2 +ω2

3 +ω2
4
)

CT d
(
−ω2

1 +ω2
2 +ω2

3 −ω2
4
)

√
2CD

(
−ω2

1 +ω2
2 −ω2

3 +ω2
4
)
 . (8)

Finally, d is the distance from the propellers to the center
of gravity while CT and CD are the thrust and drag factors in
hovering position, respectively. Further details are reported
in [29] together with parameters values of the Crazyflie.

IV. FLIGHT CONTROL SYSTEM

The flight control system follows the same idea discussed
in [29]: a reference generator takes into account the position
to reach and generates the command signals (ψ̇c, Ωc, θc and
φc) that are inputs for the on-board control architecture of
the Crazyflie. The choice is in agreement with the aim of
the work: to simulate in a virtual scenario the real aircraft
behavior. Figure 5 describes the overall system while Figs.
6 and 7 describe the reference generator and the on-board
control, respectively.

A. Reference generator

The reference generator uses the drone position (xd , yd
and zd) and the orientation along z-axis (ψk) to compute
the command signals (θc, φc, Ωc and ψ̇c). We assumed that
the drone position and velocity come from a motion capture
system (MoCap) that is modeled as an ideal virtual sensor in
the simulation environment. The scheme in Fig. 6 summaries
as it works.

The aim of the reference generator is to reach the position
coordinates (xr, yr, zr and ψr) by tuning the desired attitude
(θc and φc), the heading velocity (ψ̇c) and the thrust (Ωc)
of the Crazyflie, later used as references for the on-board
control system.

The thrust is expressed in terms of propellers speed,
obtained by the sum of two terms: the feedforward ωe and the
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= 110, KP∆θmc
= 110, KP∆ψ̇mc
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closed loop ∆ωe components. As analyzed in [29], the angu-
lar velocity at equilibrium ωe = 65673rads−1 corresponds to
the thrust force balancing the gravity. Instead, the reference
signals xe and ye (see Fig. 6) are computed as:

xe = (xr− xd)cos(ψk)+(yr− yd)sin(ψk) (9a)
ye = (yr− yd)cos(ψk)− (xr− xd)sin(ψk). (9b)

Such signals are employed as setpoint for the velocities ud
and vd [29], respectively.

B. On-board control system

The on-board control is decomposed into two parts: the
attitude and the rate controller, both illustrated in Fig. 7. As
a common rule in cascade structures, the inner loop needs
to regulate at a rate faster than the outer.

In order to simulate the real quadcopter, we decided to
keep the same on-board control architecture existing in the
latest firmware release, the 2018.01.01.

Also the complementary filter, the default Crayzflie
state estimator, has been developed according to the same



firmware release. Starting from the accelerometer and gyro-
scope data, the filter allows to estimate the attitude (ψk, φk
and θk) and the angular velocities (pk, qk and rk) used by
the on-board control loop.

Finally, we modeled the actuators dynamics (see Fig. 7)
considering also the relationship between the pulse with
modulation (PWM) signals sent to the motors and the
generated propellers speed (saturated to take into account
the physical limitations of the system), as explained in [31],

ωi =
π

30
(
α ·PWMi +q

)
, (10)

where α = 0.2685 and q = 4070.3. Such actuators receive
as inputs the rate controller signals ∆φmc, ∆θmc and ∆ψmc,
i.e., the total variations from the equilibrium, and the thrust
command Ωmc:


PWM1 = Ωmc− ∆θmc/2− ∆φmc/2−∆ψmc
PWM2 = Ωmc + ∆θmc/2− ∆φmc/2+∆ψmc
PWM3 = Ωmc + ∆θmc/2+ ∆φmc/2−∆ψmc
PWM4 = Ωmc− ∆θmc/2+ ∆φmc/2−∆ψmc

. (11)

V. NUMERICAL RESULTS

Different aspects of the simulation environment have been
investigated through numerical experiments and showed in
this section.

A. Model validation

In order to validate the flight control system before writing
its implementation code, we decided to implement first all
control loops in a Simulink scheme and interface it with
Gazebo for sending commands to and receiving data from
the detailed aircraft physical model. To this aim, we used
the MathWorks Robotics System Toolbox. It provides an
interface between MATLAB and Simulink and ROS, thus
allowing to move from the simulation scheme to the ROS
network in an easy way. As shown in [32], the commu-
nication needs to be synchronized via the Gazebo services
(unpause and pause physics) that run and stop the simulation
to avoid data losing and system instabilities.

Although the Robotics System Toolbox supports the C++
code generation and it is able to generate a ROS node from
a Simulink scheme, it is not immediate to integrate the
generated code within an already developed platform, such as
RotorS. Thus, the idea was to develop the code and to extend
the platform paying attention to reuse software modules (e.g.,
launch files, messages types, nodes, etc.) already developed
and functioning.

B. ROS integration

With the aim of a complete integration, the flight control
system has been implemented as a ROS node (see Fig. 3)
and interfaced to the Gazebo environment.

The overall system has been simulated through
Gazebo/ROS and the results illustrate in a direct way
how the system performs (the video is available, [33]). In
particular, it is possible to see how the Crazyflie 2.0 keeps

the hovering position until the simulation stops when ideal
sensors are used. Moreover from the video [34] it appears
evident how the control system is able to compensate
attitude and position disturbances coming back to the
hovering position.

A further scenario (video [35]) considers the “real” sensors
(see Fig. 7) by taking into account the IMU and the com-
plementary filter. The aircraft drift reproduces the real drone
behavior when no MoCap systems are employed to obtain
the aircraft attitude (ψd , φd and θd) and the orientation is
replaced by the estimated values (ψk, φk and θk).

In Figure 8 numerical results obtained in Matlab/Simulink
by considering the perfect state information are reported (“n”
subscript signals, solid lines). Simulation results obtained in
Gazebo/ROS (“s” subscript signals) are depicted, as well.
In particular, dashed lines with ideal odometry while dotted
lines with the real sensors are used. It is quite clear that
real measurements make difficult to achieve a good position
control without an effective estimation algorithm, while the
small differences between Matlab/Simulink and Gazebo sce-
narios can be justified by the more accurate modeling in the
3D environment. On the other hand, the altitude controller
works quite well in all considered scenarios.

VI. CONCLUSION

In this paper we presented CrazyS, a framework for
simulating and integrating Crazyflie 2.0 with ROS and the
Gazebo 3D environment. The tight integration with ex-
isting functionalities of the ROS package RotorS allows
the comprehensive simulation of the quadcopter including
the flight dynamics and any sensor available in the virtual
reality environment. In this way, it has been proven the
effectiveness and easiness of use of the platform not only for
research but also for educational purposes, so that interested
student might work in a known environment developing
their own algorithms. Nevertheless, in our opinion the work
could constitute the first step toward the development of a
more structured platform aimed to the software-in-the-loop
approach for such kind of applications.

We published the software as open-source [36] and at
the same time we opened a pull request on RotorS repos-
itory [37] with the aim to share our result with other
researchers that already use such platform.
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