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Abstract—In this paper, the theory of robust min-max control
is extended to hierarchical and multi-player dynamic games for
linear quadratic discrete time systems. The proposed game model
consists of one leader and many followers, while the performance
of all players is affected by disturbance. The Stackelberg-Nash-
saddle equilibrium point of the game is derived and a necessary
and sufficient condition for the existence and uniqueness of such
a solution is obtained. In the infinite time horizon, it is shown that
the solution of the Riccati equation is upper bounded under a
condition which is called individual controllability. By assuming
such a condition and using a time varying Lyapunov function
the input-to-state stability of the hierarchical dynamic game
is achieved, considering the optimal feedback strategies of the
players and an arbitrary disturbance as the input.

Index Terms—Dynamic Hierarchical game, Robust, Linear
Quadratic, Stackelberg-Nash-Saddle point.

I. INTRODUCTION

Hierarchical decision making has been applied widely in
many engineering fields like smart grids, manufacturing and
wireless communication networks [1]–[6]. The common aspect
of those engineering applications is that at the higher level, a
player decides first as a leader, while at the second level many
players decide in reaction to the decision of the leader, as the
followers. Therefore, there exists a competition between leader
and followers and also among the followers, as well.

The problem of multi-player hierarchical decision making
becomes more complicated when players decide repeatedly,
in a dynamic environment. Dynamic games have been studied
throughly in the literature of control theory [7]. The Nash and
Stackelberg equilibrium points are the well-known solutions of
a dynamic game, where the players decide simultaneously or
as a leader-follower, respectively [8]–[11]. Some engineering
applications of the dynamic games are given in [12], [13].
Recently, dynamic games have been applied to hierarchical
decision making in fields like pricing and spectrum sharing in
communication networks [14].

To address environmental uncertainties, the min-max control
problem can be looked as a game theoretic perspective of
robust H-inf control strategy in a dynamic environment [15].
In this framework, the problem is modeled as a zero-sum dy-
namic game, i.e., the uncertainty is considered as a player who
wants to maximize the cost function while the decision maker
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wants to minimize it [15]. Some applications of dynamic min-
max control can be found in security problems [16], [17].
Recently, the min-max control strategy has been also applied
for control over network losses under TCP-like protocol,
where the wireless network system is affected by link failures
and packets drop [18], [19]. In [20] the min-max game is
applied for decision making in a two player sequential game.
In the continuous time domain the results of min-max game is
extended to multi-player game and the conditions for existence
and uniqueness of the Nash-worst case strategy of disturbance
is given [21], [22]. However, to the best of the authors’
knowledge, the robust decision making has not been explored
in discrete time multi-player hierarchical dynamic games, yet.
Recently, some research works have been carried out on
Stackelberg and hierarchical games. In [23] a necessary and
sufficient condition is given for the existence and uniqueness
of the two-player Stackelberg game. An existence condition for
equilibrium point of a multi-leaders and multi-followers static
game is given in [24]. It is shown that the equilibrium point
of such a hierarchical game is a solution of an optimization
problem in which the solvability of the optimization problem
is guaranteed under some mild conditions.

This paper addresses a formulation for dynamic discrete
time hierarchical linear quadratic games, considering the un-
certainties as an exogenous disturbance to the system. In the
proposed dynamic game, the leader acts first and plays a
Stackelberg game with the followers. In the second level, the
followers play an n-player non-cooperative game and decide
simultaneously, after the leader. All the players, including the
leader and the followers, also play a min-max game with the
disturbance. The Stackelberg-Nash-saddle point equilibrium of
the game is derived that can be interpreted as the robust opti-
mal strategy of the players. It is shown that the robust optimal
closed loop strategies of the leader and the followers are in
fact linear feedback strategies and the corresponding Riccati
equations are given. A necessary and sufficient condition for
the existence and uniqueness of the equilibrium point of the
dynamic hierarchical game is also achieved. In addition, it is
proved that under a certain controllability assumption which is
called individual controllability the system under the proposed
players’ control strategies satisfies an input-to-state stability
condition.

This paper is organized as follows: Section II describes
the detailed system model and the problem formulation. Sec-
tion III proposes the closed loop robust optimal strategies for
the players. Conditions for the existence and uniqueness of the
equilibrium points are also given in this section. The stability
analysis of the system under the proposed feedback strategies
is given in Sect. IV. Section V includes the simulation results
and finally the paper is concluded in Section VI.
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II. SYSTEM MODEL AND PROBLEM FORMULATIONS

The proposed hierarchical game consists of a set of n + 2

players including a leader, n followers and a disturbance.
The players decide in a dynamic environment with closed
loop information about the state of the system in a finite
horizon time-steps. The strategy of each player affects the
objective function of all the players through the state space
of the system. The disturbance is considered as a virtual
player who wants to provide the worst case condition for the
objective function of the players. In the lower level of the
game, the followers play a dynamic Nash game, where the
players decide simultaneously, without having the information
of other players’ strategies and by knowing the strategy of
the leader. First, the best response of the followers to the
other followers’ strategies and disturbance is computed. In
addition, for each follower, the best response (worst case)
strategy of the disturbance is also computed as a function
of each follower’s strategy. Then, by intersecting the best
responses of the followers and disturbance (2n equations) the
Nash-Saddle equilibrium point of the game is computed. The
obtained strategy of the followers in this level will be used
by the leader for decision making in the higher level, as the
reaction function of the followers to the leader’s strategy. Then
the leader uses it to play a min-max game with disturbance.
The resulted strategy in this level is a Stackelberg-Saddle point
equilibrium strategy. Finally, the whole hierarchical game
admits a Stackelberg-Nash-saddle equilibrium point.

Consider a dynamic system evolving according to the fol-
lowing difference equation
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wk 2 Rp is the disturbance, and k points to the number of
stage. The leader’s decision is based on followers’ rationality
and both leader and followers are trying to set their control
strategy in order to minimize their cost function over a finite
number of stages, say N . Those cost functions are in quadratic
form, as inspired by the robust game theoretic approach [15].
They can be written as
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where Qi, Qn+1 2 Rq⇥q and the terminal weights
(Qi

N , Qn+1

N < 0) are all nonnegative definite matrices (denoted
by < 0) and � > 0, ri, rn+1 > 0 are positive real scalars.
Equations (2a), (2b) describe the followers’ and the leader’s
cost functions, respectively, and weight the decision sequences
ui
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and v
0•, together with the the state sequence x
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from the initial state x
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through the game dynamics (1)) and
also the disturbance effects given by the sequence w

0•. All of
the players including the leader and followers play a min-max
game against the disturbance w, here considered as a player
who wants to maximize the cost function, while other players
want to minimize it. � is the attenuation parameter which is
an estimation of the upper bound of the H-infinite norm of the
transfer function from the disturbance to the output [15].

III. EQUILIBRIUM ANALYSIS OF THE HIERARCHICAL
DYNAMIC GAME

Theorem 1: Consider the proposed hierarchical game in-
cluding one leader and n-followers with objective functions
defined in (2a), (2b) and the dynamic system (1) affected by
the disturbance. If there exists a unique Stackelberg-Nash-
saddle point equilibrium including the strategy of all the
players, then the following conditions need to be satisfied
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such that the Stackelberg-Nash-Saddle point at each stage k
will be linear in the state xk through the gains Lk as below:
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where i = 1, 2, . . . , n refer to the followers, n+1 points to the
leader, and the indices �1,�2, . . . ,�n indicate the different
disturbance’s worst case feedback strategy for different fol-
lowers and the index i = �(n+1) refers to the disturbance’s
worst case feedback strategy for the leader.

Proof: Based on the bottom-up principle we want to solve
the hierarchal game from down to top. Accordingly, for the
sake of readability, the proof will be split into three different
steps.

First step: followers’ optimal strategies. In lower level, the
sub-game perfect equilibrium point of the game is obtained



by finding the Nash-saddle point equilibrium of the game
among the followers and also between each follower and the
disturbance. Consider the simultaneous decision making of the
n-followers according to cost functions given in (2a). First, we
want to find the optimal reaction functions of the followers to
the strategy of the leader, by taking into account the state
and system dynamics information (it is assumed they know
it) and the worst case effect of disturbance on their own cost
function. That means each follower could get different saddle
point equilibria with respect to the disturbance. Thus we will
denote wi

k as the disturbance effect into the i-th follower’s cost
function. Assume that the system is in the k-th stage and all
the cost-to-go functions in the next stages have been already
optimized. The goal is to calculate the k-th stage saddle point
equilibrium for all the followers. Then, by using the dynamic
programming approach, we have the following value function
recursion for the i-th player:
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where the corresponding cost-to-go function at the step k
starting from the state xk is
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In order to calculate the optimal strategies of the followers
and the worst case strategy of disturbance (i.e.,
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the first derivatives of the cost-to-go function with respect to
ui
k and wi

k are set equal to zero as follows:
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If we denote Bk 2 Rmn⇥mn, Dk 2 Rpn⇥pn and Ak 2
Rpn⇥pn as the blocks of the matrix ↵k given in (15) such
that
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then conditions (14) can be rewritten as:
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be solved simultaneously, in order to obtain the Nash-saddle-
point equilibrium strategy of all followers in k-th stage of
the game. System (17) has (m + p)n linear equations with
(m + p)n unknowns. Since by hypothesis there exists a
unique Stackelberg-Nash-saddle point equilibrium, then ↵k

is invertible (see Theorem 2 for details and conditions), and
from (17) the reaction functions on the followers and the
corresponding worst-case strategies disturbance will be
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Note that in (19) the matrices ↵k and Ek and Fk depends
only on system matrices and Zi

k+1

, i.e., the Riccati solution
at the stage k + 1 which are all available at sage k. The
value wi

k
⇤ corresponds to the worst case strategy that could

be caused by disturbance on the i-th follower’s cost function.
In fact, there is just one disturbance as an arbitrary input to
the dynamic equation (1), but the expectation of each player
from the “worst case” effect of such an unknown disturbance
on the objective function is different and it is obtained by
maximizing the objective function of that player over possible
disturbance strategies as an input. This maximization gives
different worst case strategies for different objective functions
which are called worst case strategies of disturbance for that
player. It is clear from (18) that the optimal strategies of the
followers are dependent on the strategy of the leader. Once
the leader makes its decision, these strategies are evaluated.

Second step: leaders’ optimal strategy. Let us focus now
on calculating the Stackelberg-saddle point equilibrium of the
game in higher level which is a Stackelberg game between
leader and followers and also a min-max game between leader
and disturbance. By considering that the leader knows the
reaction functions of followers and uses those functions in its
optimal decision making, the followers’ reaction functions are
put into the states equation and then the state space equation
is changed to the following form:
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Note that the optimal value (worst case strategy) of disturbance
which was calculated in (18b) is not replaced in (20). The
reason is that we also want to calculate the worst case
condition for the leader. Again, by applying the dynamic
programming approach, the leader’s cost-to-go function at the
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Taking the derivatives with respect to the control strategy and
disturbance and putting them equal to zero we have
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Considering the uniqueness of the Stackelberg-saddle equilib-
rium by hypothesis, equation (23) gives the optimal strategies
of the leader and corresponding worst-case strategy of distur-
bance:
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Once the robust optimal strategy of the leader is derived
then the corresponding strategies of the followers in (18) is
evaluated. Replacing (23) into (18), the expressions in (7), (8)

Algorithm 1 Computation of the equilibrium point
1: Initialize the Riccati matrices in (5) and set k + 1 := N .
2: Compute the gains F i

k and F�i
k using (19).

3: Compute Ln+1
k and L�(n+1)

k from (24).
4: Compute Li

k and L�i
k from (7) and (8).

5: Update the Riccati matrices in (4).
6: If k > 1,
7: set k := k � 1 and go to Step 2.
8: else
9: end.

and (11) are proven. One can verify the necessary conditions
for the existence of the Stackelberg-Nash-saddle point equi-
librium of the game: it comes out that the cost functions must
be convex-concave, with respect to the players (follower or
leader) and the disturbance in every stage, respectively:
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Thus, conditions (3) should be applied as necessary conditions.
Note that conditions (25a) are always guaranteed by the
nonnegative definiteness of Zi

k, since ri > 0.

Third step: Riccati equations. Now, in order to complete
the proof, we need to derive the Riccati equations and show
the nonnegative definiteness of their solutions. To this aim, the
obtained control strategies are replaced into the state equation
and then into the cost-to-go functions, as well. Then the value
function of the leader and followers can be written as
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for i = 1, 2, . . . , n, n + 1. Finally we have to prove the
nonnegative definiteness of the Riccati equations solutions.
From (14b) and (22b), it comes out
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We will rewrite equation (26), by using (6a) and (27):
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Clearly, conditions (3) together with ri > 0 and Qi < 0,
guarantee the nonnegative definiteness of Zi

k as given in (28)
for all i = 1, 2, . . . , n + 1, provided Zi
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< 0. Since Zi
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N < 0 that is proven by induction.

According to the results of Theorem 1, Algorithm 1 gives
the computational procedure of the optimal gains and Riccati
matrices.

Theorem 2: If conditions (3) of Theorem 1 are satis-
fied then the cost functions are strictly convex-concave and
there exists a unique Stackelberg-Nash-saddle point equi-
librium including the strategy of all players if and only
if I +
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Proof: From relations (25) it is clear that positive def-
initeness of matrices (3) are equivalent to say that the cost
functions are strictly convex-concave. Thus the existence and
uniqueness of the Stackelberg-Nash-saddle point equilibrium
are equivalent. Considering the conditions related to the op-
timal strategies of followers in (17), if the conditions (3) are
satisfied in a strict sense, then Dk is invertible and by a Schur
complement argument we get

W⇤
k =D�1

k

�
�AkU⇤

k + Fk(Axk +Bn+1vk)
�
, (29a)

U⇤
k =

�
Bk � diag(A>

k )D�1

k Ak

��1

⇥
�
Ek � diag(A>

k )D�1

k Fk

�
(Axk +Bn+1vk). (29b)

It is not difficult to show that the matrix Mk = Bk �
diag(A>

k )D
�1

k Ak can be partitioned into the following blocks:

(Mk)ij =(Bi
)

>Zi
k+1

D(�

i
k)

�1D>Zi
k+1

Bj

+ (Bi
)

>Zi
k+1

Bj , i, j = 1, . . . , n, i 6= j (30a)
(Mk)ii =(Bi

)

>Zi
k+1

D(�

i
k)

�1D>Zi
k+1

Bi

+ (Bi
)

>Zi
k+1

Bi
+ riIm, i = 1, . . . , n. (30b)

We can write

Mk = R+

0

BBB@

(B1

)

>M1

k
(B2

)

>M2

k
...

(Bn
)

>Mn
k

1

CCCA
�
B1 B2 · · ·Bn

�
| {z }

˜B

= R+

˜Pk
˜B, (31)

where R = diag (riIm) is a block diagonal matrix and

M i
k = Zi

k+1

[Iq +D(�

i
k)

�1D>Zi
k+1

] < 0. (32)

By applying the matrix inversion lemma it comes out that

M�1

k = R�1 �R�1

˜PkS
�1

k
˜BR�1, (33)

where

Sk = Iq + ˜BR�1

˜Pk = Iq +

nX

i=1

Bi
(ri)�1

(Bi
)

>M i
k. (34)

Therefore, nonsingularity of Sk implies the nonsingularity
of Mk and the existence and uniqueness of the Nash-
saddle equilibrium point. The existence and uniqueness of
the Stackelberg-saddle equilibrium point holds thanks to the
invertibility of the matrix in (24), implied by (3) and rn+1 > 0

(a Schur complement argument easily shows that).
Remark 1: Note that here the increasing property of Zi

k is
not necessarily guaranteed like conventional LQ problem [25]

or min-max H-inf problem [15] since in our case the matrix
Hi

k is time varying which is not the case of those problems.
We will show this property via an example in the simulation
results.

Lemma 1: If Qi
N � 0, i = 1, 2, . . . , n+1 and the matrices⇣

Ci> A>
⌘>

, with Qi
= Ci>Ci, are full rank for all i =

1, 2, . . . , n+1, then the solutions of the Riccati equations (4)-
(5) are positive definite.

Proof: Let’s first show that Zi
k+1

� 0 implies Zi
k �

0. The proof follows by contradiction. Assume 9xk 6=
0 |x>

k Z
i
kxk = 0 (Zi

k is nonnegative definite): by using (28), it
necessarily follows that all those terms (that are nonnegative
definite) have to be equal to zero. Moreover, since Zi

k+1

� 0

and �

i
k � 0, then

Cixk = H0

kxk = Li
kxk = L�i

k xk = 0, i = 1, 2, . . . , n+ 1.
(35)

According to (27), L�i
k xk = 0 is satisfied by H0

kxk = 0. By
looking at (7), we have

Li
kxk = F i

kAxk + F i
kB

n+1Ln+1

k xk = 0 (36)

and, thus, F i
kAxk = 0. From (6b) and taking into account the

fact that Ln+1

k xk = 0 and F i
kAxk = 0, it follows

H0

kxk = A0
kxk = Axk = 0. (37)

Then the existence of xk 6= 0 |x>
k Z

i
kxk = 0, implies

✓
Ci

A

◆
xk = 0, (38)

which contradicts the hypothesis and it is concluded that Zi
k �

0. Since Zi
N = Qi

N � 0, by induction we get Zi
k � 0, 8k 

N, i = 1, 2, . . . , n+ 1.
Of course, since the Nash-Stackelberg-saddle point strategy is
a linear feedback applied to a linear system, the cost functions,
and thus the solutions of the Riccati equations, are upper
bounded for any finite time interval. We will now show that
Riccati equations solutions have an upper bound also for an
infinite time interval.

Lemma 2: If the pairs
�
Ai

k, B
i
�
, i = 1, 2, ..., n + 1 are

controllable, then the total cost functions J i
0,N of the leader

and followers (equations (2)) are upper bounded for any
0 < N  +1 under the Nash-Stackelberg-saddle point
strategy of disturbance and followers and leader’s control
strategies given by (11), where

Ai
k = A+DL�i

k +B(n+1)Ln+1

k +

X

j 6=i

BjLj
k (39a)

An+1

k = A+DL
�(n+1)

k +

X

j

BjLj
k. (39b)

Furthermore, the corresponding solutions of the Riccati equa-
tions, denoted by Zi

k,N (for highlighting the fact that N is not
fixed a priori), are also bounded from above, i.e., there exists
a symmetric matrix ¯Z such that ¯Z < Zi

k,N 8N � k � 0.
Proof: Let us consider the controllability of one pair�

Ai
k, B

i
�

(individual controllability) of the following system:

xk+1

= Ai
kxk +Biui

k. (40)



It follows that there exists a set of control strategies ˜U ti
i =

{ũi
k}

ti
k=0

for the dynamic system (40) so that ˜Ui steers any
initial state x

0

to zero in a finite number (let’s say ti) of
steps. Let us extend such control strategy over the whole
number of stages k 2 [0, N � 1] by adding all zeros to the
control sequence, such that ˜Ui , {ũi

k}
ti
k=0

[ {0, 0, . . . , 0}.
By considering linear feedback strategies of the other players,
chosen as the optimal gains (11), and the worst case strategy of
the disturbance from the i-th player’s perspective, it is possible
to apply the control strategy ˜Ui into the system (40) in such a
way that the cost-to-go function J i

k will be equal to zero for
k � ti and therefore, the total cost of the i-th player will be
bounded, under such a control strategy, for any N > ti.

It is straightforward to verify that the optimal control
strategy of the i-th player, {ui⇤

k }N�1

k=0

, given by the Nash-
Stackelberg-saddle point (11), corresponds to the optimal
control strategy for the dynamic system (40) that minimizes
the following cost function

J i
0,N (x

0

, ui
0•, L

�i
0•x0•). (41)

Since the set of control inputs {ui⇤
k }N�1

k=0

minimizes the total
cost of the i-th player, given the equilibrium strategy of the
other players and also disturbance, we have the following
inequalities

0  J i
0,N (x

0

, u⇤
0•, L

�i
0•x0•

⇤
)  J i

0,N (x
0

, ˜Ui, L
�i
0•x0•)

 x>
0

¯Zix
0

, (42)

where the first inequality is due to the nonnegative definiteness
of the Riccati equation solutions while the latter one is related
to the fact that J i

0,N (x
0

, ˜Ui, L
�i
0•x0•) is a quadratic form

depending only on x
0

and ˜Ui is a linear function of x
0

[26]
and it is equal to zero for k � ti. Thus it comes out

0 4 Zi
0,N 4 ¯Zi i = 1, 2, . . . , n+ 1, 8N � 0. (43)

Lemma 3: If the pairs
�
Ai

k, B
i
�
, i = 1, 2, . . . , n+1 in (39)

are controllable and the pairs
�
A,Ci

�
, i = 1, 2, . . . , n+1 are

observable, then there exists an upper bound for Zi
k, denoted

by Z
i
, and also a lower bound denoted by Zi such that 0 �

Zi 4 Zi
k 4 Z

i 8k i = 1, 2, . . . , n+ 1.
Proof: The proof easily follows by previous lemmas and

by considering that the observability of the pairs
�
A,Ci

�

implies the full rank condition on the matrix
⇣
Ci> A>

⌘>
.

Of course Z
i

can be chosen as �
max

(

¯Zi
)I and Zi

=

mink (�min

(Zi
k))I .

IV. STABILITY ANALYSIS

This section aims to investigate the stability of the closed
loop system, considering the optimal feedback control signal
of the leader and followers in presence of an arbitrary distur-
bance. It should be mentioned that the worst case feedback
of the disturbance is not “implemented” (by disturbance) in
reality but it is used just for computing the players’ control
strategy that is robust against an unknown disturbance. For
that reason in this analysis the disturbance is considered as an

arbitrary bounded input to the system and the input-to-state
stability of the system (1) is studied.

Theorem 3: Assuming the conditions in Theorem 1,
if there exists a player j such that the pair (Aj

k, B
j
) is

controllable and the pair (A, Cj
) is observable where,

Qj
= Cj>Cj , then the system (1), with the closed loop state

feedback ui
k = Li

kxk, i = 1, 2 . . . , n and vk = Ln+1

k xk, is
input-to-state stable with respect to the disturbance w.

Proof: To prove the input-to-state stability we just need
to prove that the system is globally asymptotically stable when
w = 0 [27], i.e., when the closed loop dynamics are

xk+1

=Axk +

n+1X

i=1

BiLi
kxk =

�
A0

k +B0
kL

n+1

k

�
xk. (44)

For this purpose, the following time-varying Lyapunov func-
tion is used:

V (x, k) = x>Zj
kx. (45)

By Lemma 3 we have

0 � Zj 4 Zj
k 4 Z

j
. (46)

If we consider ⌘ = �
min

(Zj
) and ⇢ = �

max

(Z
j
) the proposed

Lyapunov function lays in the following bounds:

⌘kxk2  V (x, k)  ⇢kxk2. (47)

Then, the difference of the Lyapunov function, defined as

�V (x, k) , V (xk+, k + 1)� V (x, k), (48)

becomes (note that xk+ ,
�
A0

k +B0
kL

n+1

k

�
x),

�V (x, k) = ((A0
k +B0

kL
n+1

k )x)>
⇣
Zj
k+1

⌘ �
A0

k +B0
kL

n+1

k )x
�

� x>
⇣
Qj

+ (Hj
k)

T
Zj
k+1

Hj
k+rj(Lj

k)
T
Lj
k � �2

(L�j
k )

T
L�j
k

⌘
x.

(49)

After some simplifications we have

�V (x, k) =� x>
⇣
Qj

+ 2(A0
k +B0

kL
n+1

k )

>Zj
k+1

DL�j
k

⌘
x

+ x>
⇣
rjLj

k

>
Lj
k � �2

(L�j
k )

>L�j
k

⌘
x

+ x>
(L�j

k )

>
(D>Zj

k+1

D)L�j
k x. (50)

From (27), it is obtained that

x>
(L�j

k )

>
�

j
kL

�j
k x = x>

(A0
k +B0

kL
n+1

k )

>Zj
k+1

DL�j
k x.

(51)

By replacing (51) into (50)

�V (x, k) = �x>
⇣

Qj
+ rjLj

k

>
Lj
k + (L�j

k )

T
�

j
kL

�j
k

⌘
xk.

(52)

Hence, we have

�V (x, k)  0. (53)

In the case of equality we obtain

x>Qjx = 0, Lj
kx = 0, (54)



and thus the state of the system will asymptotically moves
towards the region satisfying

Cjx = Lj
kx = 0. (55)

From (44) in such region it holds

xk+1

= Axk, Cjxk = 0, (56)

but, since (A,Cj
) is observable, it is not possible to have

Cjx = 0 unless x = 0 and as a result the system is input-to-
state stable.

V. SIMULATION

In this section, an illustrative example of proposed hier-
archical dynamic system is presented. The number of state
variables and the followers are considered equal to two. The
states space model, initial conditions and output of the system
are given as follows:

x
0

=

�
5 3

�>

xk+1

=

✓
5 1

8 4

◆
xk +

✓
3

4

◆
vk +

✓
1

2

◆
u1

k

+

✓
2

1

◆
u2

k +

✓
1

1

◆
wk. (57)

The leader’s control coefficient is set bigger than the fol-
lowers, since the leader’s decision is more effective in some
practical cases. The disturbance is considered as a uniformly
distributed noise, bounded in [�0.5, 0.5]. The value of other
parameters are given in Table I. Note that the disturbance
is considered as its actual value in the state equation (57).
Nevertheless, since the players do not have access to the dis-
turbance bound, they apply the proposed min-max scheme to
act robustly against disturbance. The optimal control strategies
of the players is shown in Fig. 1. As we can see, because
of the effect of actual disturbance, although the system is
disturbance-to-state stable (see Theorem 3), the control strate-
gies are still affected by a zero mean bounded disturbance.
The worst case strategies of disturbance and also the actual
disturbance applied to the state equation are shown in Fig. 2.
The optimal cost of the players considering the worst case
strategy of disturbance is shown in Fig. 3. As we can see, the
cost of the players in Fig. 3 is strictly increasing but that is not
true for the Riccati matrices of the players. We mentioned this
point in the paper in Remark 1. We demonstrate this property
by plotting the first principal minor of the Riccati matrices in
Fig. 4.

TABLE I
SYSTEM PARAMETERS

Parameter Leader First Follower Second Follower
ri 0.3 1 2
Qi

N 0.91 · I
2

0.56 · I
2

0.8 · I
2

Qi
5 · I

2

2 · I
2

4 · I
2
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Fig. 1. Players’ decisions
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Fig. 2. Players’ cost function with the actual disturbances

VI. CONCLUSION

In this paper the H-inf min-max problem was extended
to a hierarchical multi-player robust game, by considering
a discrete time linear state space model and quadratic cost
functions of the players in presence of a disturbance. In the
lower level of the hierarchical game the sub-game Nash-saddle
equilibrium point was derived by intersecting the followers’
best responses strategies together with disturbance’s worst
case strategies. In the higher level, where the leader plays
a Stackelberg game with followers and also participates in a
min-max game with the disturbance, the Stackelberg-Nash-
saddle equilibrium point of the game was computed.

It has been showed how the considered game does not
satisfy usual properties of the conventional LQ or min-max
H-inf problems, e.g., the monotonicity of the Riccati equation.
Nevertheless, conditions for the existence and uniqueness of
the equilibrium point of the game was given and, moreover,
by introducing the individual controllability assumption, it was
proven the input-to-state stability of the infinite time horizon
game played with optimal time varying strategies at the
Stackelberg-Nash-saddle equilibrium point. The given results
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Fig. 3. Players’ cost function with the worst-case strategies of disturbances
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open the way to further investigation of a such kind of game,
in particular by considering problems like the convergence
of the Riccati equations, the existence of the corresponding
algebraic equations solution, the look for simple conditions
that guarantee the individual controllability.
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