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Abstract Piecewise linear (PWL) systems can exhibit quite complex behav-
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anchor equations as further problem constraints. The complementarity prob-
lem solution is shown to provide an accurate prediction of the steady-state
(stable and unstable) oscillation and corresponding period. This is demon-
strated through numerical investigations of several PWL systems of practical
interest: a neural oscillator, a deadzone feedback system, a stick-slip system
and a repressilator.
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1 Introduction

Piecewise linear (PWL) models can represent a wide class of practical systems
and can exhibit interesting nonlinear behaviors such as periodic steady-state
oscillations. In this paper, we consider the problem of the computation of
periodic solutions for linear time-invariant dynamical systems whose inputs
are related to the outputs through a static multi input–multi output PWL
relation, possibly set-valued. That class of dynamical systems has attracted
a considerable interest in the literature, because such representation is suf-
ficiently easy to deal with and, at the same time, it allows to capture even
complex behaviours arising in many practical systems. We can mention elec-
trical circuits where the current–voltage characteristics of some devices can
be considered as piecewise linear, such as nonlinear resistors [1], ideal diodes
and switches [2,3], or mechanical systems with Coulomb friction [4]. In those
applications, the steady-state behaviour is generally depicted by a periodic
motion [5,6]. Since they tend to periodically oscillate also when no external
excitation is applied, the period related to the periodic solution is difficult to be
predicted a priori. In the literature, various mathematical methods, basically
classified as time-domain or frequency-domain, have been proposed to compute
the steady-state periodic solution and its period. Time-domain approaches are
based mainly on the so-called shooting method which determines the periodic
solution by solving a sequence of nonlinear initial value problems through the
Newton-Raphson method [7–9]. The main drawback of this method is the eval-
uation of the sensitivity matrix, which is often computationally expensive and
becomes even more complicated for nonsmooth systems [10–12] where often
the discontinuity is approximated by a smooth function [13,14]. In frequency-
domain, harmonic balance is the classical technique used for determining the
steady-state behaviour of nonlinear autonomous systems that exhibit a single
periodic attractor [15]. The describing function method (i.e., harmonic bal-
ance with a single harmonic) provides simpler results about the existence of
a periodic oscillation and its parameters (the amplitude and the period) [16,
17], but it is not able to accurately predict them, particularly when the sys-
tem under consideration does not satisfy the assumption of filtering out the
higher-order harmonics [18]. In [19], an extension of the harmonic balance
method for computing the rotary and oscillatory periodic motion of a nonlin-
ear smooth system is proposed. Mixed time-frequency-domain approaches are
presented in [20] and [21]. In the first paper, a nonlinear oscillator is analysed
by linearizing the system along the solution predicted by the harmonic balance
technique and then by computing the Floquet’s multipliers by using a time-
domain numerical algorithm. Instead, in [21], the harmonic balance method
is implemented together with the envelope following method in time domain.
Such approach is used to compute the steady-state behaviour and the asso-
ciated period of nonlinear circuits forced by two input signals with different
oscillation frequencies.

The recent literature has shown the complementarity framework being use-
ful for investigating PWL systems [22–24] and a particular class of hybrid sys-
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tem [25,26]. In [27,28] and [29] it has been shown how the linear (or mixed
linear) complementarity representation of the feedback characteristic allows
to represent the discretized closed-loop system as a linear complementarity
system. Including the periodicity constraint into a corresponding linear com-
plementarity problem represents a method for computing periodic solutions
in autonomous Lur’e systems. The main drawback of the previous approaches
is that the period must be known a priori or, at least, a certain estimation
of the period must be obtained by using, for instance, the describing function
technique.

Instead, in [30], the period is considered as a further unknown and it is
computed together with the periodic solution by constructing a suitable mixed
complementarity problem. The scope of this paper is to extend previous au-
thors results by proposing techniques based on complementarity problems for
computing the periodic solution in PWL systems.

The paper is organized as follows. In Section 2, we present the autonomous
PWL systems considered in this paper and we give some preliminaries about
the complementarity problems and the complementarity model of a class of
PWL characteristics. Section 3 shows how to formulate a mixed quadratic
complementarity problem (MQCP) for computing a periodic solution together
with the period. In Section 4, two specific cases are analyzed: when the PWL
system has also equilibrium points and when the period of the oscillation
is known. In Section 5, we show the effectiveness of the proposed approach
by considering different steady-state behaviours in several PWL systems of
practical interest. In particular, we consider a stable periodic solution in a
neural oscillator, an unstable periodic solution in a deadzone feedback system,
a sliding periodic solution in a stick-slip system and the periodic oscillation
belonging to a repressilator. The paper is concluded in Section 6.

2 Preliminaries

Let us introduce first some notation and preliminary definitions. Let the col( · )
operator indicate a vector obtained by stacking in a unique column the column
vectors in its argument, RN

+ is the set of nonnegative N -dimensional real vec-
tors, IN denotes the N×N identity matrix and 1N , ∞N are the N -dimensional
vectors whose components are ones and infinity, respectively. The symbol ⊗
indicates the Kronecker product. The following block circulant matrix notation
is adopted

ΓN (B1,B2) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

B1 0 · · · · · · 0 B2

B2 B1 0 · · · · · · 0

0 B2 B1 0 · · ·
...

...
. . .

. . .
. . .

. . .
0 · · · 0 B2 B1 0
0 0 · · · 0 B2 B1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (1)
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where B1 and B2 are square matrices of the same dimension and N is the
number of times that B1 is repeated on the main diagonal.

The mixed quadratic complementarity problem (MQCP) is another im-
portant ingredient of this paper. It is defined as follows. Given a function
ϕ(z) : Rr → Rr, a square matrix M ∈ Rr×r, a vector q ∈ Rr, and lower and
upper bounds ℓ, u ∈ Rr ∪ {−∞,+∞}r, a MQCP is to

find z ∈ R
r, w ∈ R

r
+, v ∈ R

r
+ (2a)

s.t. ϕ(z) +Mz + q = w − v (2b)

ℓ ! z ! u, (z − ℓ)⊤w = 0, (u− z)⊤v = 0, (2c)

where ϕ(z) is a vector of quadratic forms in z and the inequalities are meant
componentwise. If ℓ and u are finite, the continuity of F (z) = ϕ(z) +Mz + q
ensures the existence of solutions. More results about the existence of solutions
for complementarity problems and variational inequality (VI) can be found
in [31]. Recall that every (nonlinear) complementarity problem as in (2) is
a variational inequality (VI). When the term ϕ(z) does not appear in (2a),
the MQCP becomes a mixed linear complementarity problem (MLCP) [32].
Moreover, if the upper bound u has all infinity components and ℓ = 0, one
gets v = 0 and the problem reduces to the classical linear complementarity
problem with w and z being the usual complementarity variables [33].

ẋ = Aux+ Buu+ eu
ξ = Cux+Duu+ fu

R1

R2 HyHu

...

Rm

u ξ

y2
...

y1

ym

λ1

λ2

...

λm

−

Fig. 1 Block diagram of a PWL system.
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yi

λi

ℓi
•

u

1

µi

•

βRi
µiℓi + βRi µiui + βRi

Fig. 2 PWL saturation-like characteristic with µi > 0.

The class of systems of interest can be represented by the block scheme in
Fig. 1, where the dynamical system is described by

ẋ = Aux+Buu+ eu (3a)

ξ = Cux+Duu+ fu (3b)

u = −Huλ (3c)

y = Hyξ, (3d)

with Au ∈ Rn×n, Bu ∈ Rn×p, Cu ∈ Rp×n, Du ∈ Rp×p, eu ∈ Rn, fu ∈ Rp,
y = col(y1, y2, . . . , ym), λ = col(λ1,λ2, . . . ,λm), Hy ∈ Rm×p and Hu ∈ Rp×m.
Each block Ri consists of a scalar saturation-like characteristic as in Fig. 2.
Such characteristic with finite βRi

, ℓi, ui ∈ R, ℓi < ui and µi " 0 can be
represented in the following mixed linear complementarity form

µiλi − yi + βRi
= w − v (4a)

ℓi ! λi ! ui, (λi − ℓi)w = 0, (ui − λi)v = 0, (4b)

with w " 0 and v " 0. If µi > 0, for any given yi ∈ R the MLCP (4) has a
unique solution λi [34]. Therefore, in order to show that the MLCP (4) corre-
sponds to the relation in Fig. 2, it is enough to verify that the feasible values
of λi correspond to values of yi belonging to the saturation characteristic. In
particular, if λi = ℓi from (4b) it follows v = 0 and, since w " 0, one obtains
yi ! µiℓi + βRi

, that corresponds to the lower constant saturated piece of the
characteristic. If ℓi < λi < ui from the second and third constraints in (4b) it
follows w = v = 0 and from (4a) one obtains yi = µiλi+βRi

, that corresponds
to the linear interval of the saturation characteristic. Finally if λi = ui, one
obtains w = 0 and yi " µiui+βRi

, which corresponds to the upper saturation
of the characteristic. If µi = 0 the model (4) represents set-valued character-
istics. Indeed it is easy to verify that for µi = 0 the model (4) represents a
set-valued step function.
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By collecting (4) and by defining R = col(R1,R2, . . . ,Rm), one can write
the relation between y and λ as follows

find λ ∈ R
m, w ∈ R

m
+ , v ∈ R

m
+ (5a)

s.t. MRλ− y + βR = w − v (5b)

ℓR ! λ ! uR, (λ− ℓR)⊤w = 0, (uR − λ)⊤v = 0, (5c)

with MR = diag{µ1, µ2, . . . , µr} ∈ Rm×m, ℓR = col(ℓ1, ℓ2, . . . , ℓm) ∈ Rm,
u = col(u1, u2, . . . , um) ∈ Rm and βR = col(βR1

,βR2
, . . . ,βRm

) ∈ Rm.
The model (5) includes the representation of many typical PWL func-

tions such as mininum, maximum, relay, deadzone and PWL characteristics
obtained by linear combinations of these ones.

We now obtain a compact representation for the closed-loop system in
Fig. 2. By substituting (3c) in (3a) and (3b), and (3b) in (3d) and by taking

A = Au (6a)

B = BuHu (6b)

C = HyCu (6c)

D = HyDuHu (6d)

e = eu (6e)

f = Hyfu, (6f)

we obtain the following dynamical system

ẋ = Ax+B(−λ) + e (7a)

y = Cx+D(−λ) + f (7b)

(y,λ) ∈ R, (7c)

with R = col(R1,R2, . . . ,Rm) given by (5) and (yi,λi) ∈ Ri, i = 1, . . . ,m.
The class of systems (7) is the one considered in this paper where (A,B,C)

is a minimal state space realization with A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n,
D ∈ Rm×m, e ∈ Rn and f ∈ Rm all being constant and the time derivative is
meant almost everywhere. It is assumed that for every initial condition x(t0)
the system (7) has an absolutely continuous solution x(t) : [t0,+∞) (→ Rn

that satisfies (7) for almost every t " t0. A solution x(t) of the system (7) is
periodic if there exists a positive real number T such that x(t+ T ) = x(t) for
any t " 0. The stability concepts and definitions typically used for systems
and equilibria can be also applied to periodic solutions which can be stable,
asymptotically stable and unstable [35].

In the next section, it is shown how the combination of (5) with the dis-
cretized version of (7a)–(7b) allows to construct a MQCP for the computation
of periodic solutions of (7).
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3 Computation of periodic oscillations

Let x(t) be a nonconstant periodic solution of (7) with unknown period, say
T . The dynamical model (7) can be normalized with respect to the unknown
period by using the time scaling t = T τ , where τ is a dimensionless time
variable. Then (7) can be rewritten as

x′ = TAx+ TB(−λ) + Te (8a)

y = Cx+D(−λ) + f (8b)

(y,λ) ∈ R, (8c)

where x′ is the derivative with respect to τ . Any periodic solution of (7) with
period T will correspond to a periodic solution of (8) with period 1. Note that
the right hand side of (8a) is quadratic with respect to the unknowns T , x
and λ.

By using (5) and (8), the problem of computing the periodic solution is to

find λ(τ) : [0, 1] → R
m, w(τ) : [0, 1] → R

m
+ , v(τ) : [0, 1] → R

m
+ ,

T ∈ R, x(τ) : [0, 1] → R
n (9a)

s. t. TBλ(τ)− TAx(τ) + x′(τ) − Te = 0 (9b)

(MR +D)λ(τ) − Cx(τ) − f + βR = w(τ) − v(τ) (9c)

ℓR ! λ(τ) ! uR, (λ(τ) − ℓR)⊤w(τ) = 0, (uR − λ(τ))⊤v(τ) = 0 (9d)

λ(0) = λ(1), x(0) = x(1), w(0) = w(1), v(0) = v(1), (9e)

where the constraints (9b)–(9d) must hold for any τ ∈ [0, 1].
The phase of a periodic solution of an autonomous system is not fixed.

Then any time translation of a periodic solution provides another ‘different’
periodic solution. In other words, if the PWL system admits a periodic solu-
tion, it admits an infinite number of periodic solutions each one differing from
the others by a translation in time. In order to fix the initial phase of the pe-
riodic solution, one more equation is required, which is usually called anchor

equation [36–38]. A possible anchor equation is the phase condition proposed
in [38]:

xj
′(τ̂ ) = Tc⊤j (Ax(τ̂ )−Bλ(τ̂ ) + e) = 0, (10)

where xj is a generic j-th component of the state at an arbitrarily chosen
time instant τ̂ ∈ [0, 1] and cj ∈ Rn is a vector with all elements equal to zero
except for the j-th element equal to 1. Note that the index j can be chosen
arbitrarily in the case of sufficiently smooth solutions. Indeed, in the case of
periodic solutions x(t) of class C1, the time derivative of each state variable
must be zero at least at one time instant τ̂ ∈ [0, 1].

In order to solve (9)–(10) with the corresponding constraints, one can dis-
cretize (9b) and reformulate the problem in terms of a discrete-time comple-
mentarity problem. By using the (θ, γ) discretization technique [39] with a
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sampling period 1/N , N being an integer, and by using the subscript k for
indicating the k-th sample of a variable, from (9b) one obtains

TγBλk+T (1−γ)Bλk−1−T θAxk−T (1− θ)Axk−1+Nxk −Nxk−1−Te = 0,
(11)

where θ ∈ [0, 1] and γ ∈ [0, 1]. The constraints (9c)–(9d) can be written for
each sampling time instant:

(MR +D)λk − Cxk − f + βR = wk − vk (12a)

ℓR ! λk ! uR, (λk − ℓR)⊤wk = 0, (uR − λk)
⊤vk = 0, (12b)

with wk " 0, vk " 0 and k = 1, . . . , N . Moreover (9e) can be rewritten as

λ0 = λN , x0 = xN , w0 = wN , v0 = vN . (13)

Finally, one can assume that τ̂ in (10) is a sampling time instant. Therefore,
by defining k̂ = τ̂N , the anchor equation (10) can be written as

Tc⊤j (Axk̂ −Bλk̂ + e) = 0, (14)

or, equivalently,
xk̂ − xk̂−1 = 0. (15)

By collecting (11)–(13) for k = 1, . . . , N in a matrix form we are now able
to formulate the problem of computing the periodic solution (and its period)
as a MQCP. In particular the unknown vector z for the MQCP is given by the
samples λk and xk for k = 1, . . . , N and the period T :

z = col(λ, x, T ) = col(λ1, . . . ,λN , x1, . . . , xN , T ). (16)

The lower and upper bounds for T and for each xk with k = 1, . . . , N are
chosen as −∞ and +∞:

ℓ = col(ℓλ, ℓx, lT ) = col(1N ⊗ ℓR,−∞N ·n,−∞) (17a)

u = col(uλ, ux, uT ) = col(1N ⊗ uR,+∞N ·n,+∞). (17b)

Given the discretization parameters (θ, γ) and the number of discrete sam-
ples per period N , by considering (16)–(17), by collecting (11)–(12) for k =
1, . . . , N together with (13) and by considering (14), the MQCP can be rep-
resented in the form (2) with

M =

⎡

⎣

0 G e
MR C 0
hλ hx 0

⎤

⎦ ∈ R
(Nn+Nm+1)×(Nn+Nm+1) (18a)

q = col (0Nn, f , δq) ∈ R
Nn+Nm+1 (18b)

ϕ(z) = col (φ1(z), . . . ,φN (z), 0Nm+1), (18c)

where φk(z) : RNn+Nm+1 → Rn are given by

φk(z) = TγBλk + T (1− γ)Bλk−1 − T θAxk − T (1− θ)Axk−1, (19)
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for k = 1, . . . , N together with (13), and

G = NΓN (In,−In) (20a)

e = −1N ⊗ e (20b)

MR = IN ⊗ (MR +D) (20c)

C = −IN ⊗ C (20d)

f = 1N ⊗ (−f + βR), (20e)

h⊤
λ ∈ RNm is a vector with all zero elements, h⊤

x ∈ RNn is a vector with all zero
entries but two elements −1 and +1 corresponding to the j-th component of
xk̂−1 and xk̂, representing the anchor equation (15), and δq = 0. The described
formulation is used to compute a stable periodic oscillation in a neural oscilla-
tor and an unstable periodic solution in a deadzone feedback system in Sects.
5.1 and 5.2, respectively. Indeed, in such examples the feedback characteristic
is Lipschitz continuous, then a solution of class C1 is expected.

If x(t) is of class C0, as in the case of a relay feedback system, we have
to pay attention to the fact that the time derivative can jump, so a different
phase constraint should be derived. In particular, we assume that there exists
a component of the system output, say c⊤j y, which is equal to a value αj at a
time instant τ̂ ∈ [0, 1]:

c⊤j y = c⊤j (Cx(τ̂ )−Dλ(τ̂ ) + f) = αj . (21)

The constant αj should be selected by exploiting the system structure. In
particular, since we use the phase condition (21) because the trajectory x(t) is
only C0, the discontinuity of the time derivative ẋ(t) allows to say that there
exist some j and τ̂ ∈ [0, 1] such that (21) holds with αj being a discontinuity
point of the relation Rj .

As in the previous case, we write (21) in discrete-time as follows

c⊤j (Cxk̂ −Dλk̂ + f) = αj , (22)

with k̂ = τ̂N . The anchor equation (22) can be included in the form (18) by
setting hλ and hx with all zero entries except for the components corresponding
to k̂ which are equal to −c⊤j D and c⊤j C, respectively, and δq = c⊤j f − αj .
In Sects. 5.3 and 5.4, the anchor equation (22) is used to compute periodic
nonsmooth oscillations in a stick-slip system and in a repressilator.

The continuous PWL interpolation of the sequence xk obtained by solving
the MQCP derived above is expected to approximate better and better the
continuous-time periodic solution x(t) of (7) as the number of samples per
period N increases. Such convergence property of the discrete-time solution is
also called ‘consistency’ [40]. A formal proof of consistency of the solution of
time-stepping methods used for solving boundary-value differential variational
inequalities can be found in [41]. However, the nonsingularity condition of
matrices involved in the boundary-value constraint is not valid in the case of
periodic solutions.
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4 Equilibrium points and known period

In this section, the MQCP formulated above is specified under two interesting
conditions, i.e., when more equilibrium points coexist and when the period of
the oscillation is known.

4.1 Elimination of equilibrium points

Depending on the relation (y,λ) ∈ R, constant solutions of (7) are also pos-
sible. For instance, when e and f are zero and (0, 0) ∈ R, the origin is also
a solution (an equilibrium) of the system. Since we are interested in noncon-
stant periodic solutions and the phase constraints (10) and (21) do not exclude
the trivial solution (and more in general equilibrium points), one must add a
further constraint which excludes the zero solution. To this aim the following
condition can be used

x⊤

(•,̂i)x(•,̂i) > 0 (23)

for some chosen î, where x(•,̂i) ∈ RN is the vector obtained by collecting all

samples of the î-th component of the state vector. The condition (23) can be
included in the MQCP by using the following complementarity representation

find zρ ∈ R, wρ ∈ R+, vρ ∈ R+ (24a)

s. t. x⊤

(•,̂i)x(•,̂i) − ϵ = wρ − vρ (24b)

ℓρ ! zρ ! uρ, (zρ − ℓρ)wρ = 0, (uρ − zρ)vρ = 0, (24c)

where ϵ is a small positive parameter, with ℓρ = 0 and uρ equal to +∞ (so
that vρ = 0). Indeed, from the nonnegativity of the variable wρ, the con-
straints (24b) with vρ = 0 implies that x⊤

(•,̂i)
x(•,̂i) must be strictly positive.

This approach can be simply extended for the elimination of nonzero equilib-
rium points.

4.2 MLCP for known period

A particular case of MQCP occurs when the period T of the periodic solution
is known. In this case, the periodic solution computation can be formulated
in terms of a MLCP. Since T is known, equations (11) are linear with respect
to the unknowns λk and xk. By collecting (11) and (12a) for k = 1, . . . , N ,
by defining ℓ and u as in (17) without the last element and by using the
periodicity condition (13), one obtains

B λ+Ax+ e = 0 (25a)

MRλ+ Cx+ f = w − v, (25b)
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with

A = ΓN

(

In −
T

N
θA,−In −

T

N
(1− θ)A

)

(26a)

B =
T

N
ΓN (γB, (1− γ)B) , (26b)

and e, MR, C and f defined as in (20b)–(20e), respectively.
Since T is known, the anchor equation (10) is not required anymore. In

this case, we can define z = col(λ, x) and formulate the above problem as a
MLCP, that is (2) without ϕ(z), with the following matrices

M =

[

MR C
B A

]

and q =

[

f
e

]

. (27)

In the particular case of a nonsingular A, one can solve (25a) for the vector
x thus obtaining

x = −A
−1

(B λ+ e). (28)

By substituting (28) in (25b) one obtains

(MR − CA
−1

B)λ+ f − CA
−1

e = w − v, (29)

which is in the form (2b) without ϕ(z) and with z = λ, M = MR − CA
−1

B

and q = f − CA
−1

e. The solution λ of the corresponding MLCP can be used
for the computation of the periodic solution x by using (28).

Note that for T/N → 0, the determinant of A tends to zero. Then we can
state that when a high accuracy is required, i.e., a small step size T/N , the
formulation in (25) is preferable to (29).

In the case that the PWL system presents constant solutions, the com-
plementarity problem can be reformulated so that the new problem has no
constant solutions. Since the use of (24) makes the problem nonlinear, in or-
der to preserve the linearity we can use an alternative approach.

As an example, let assume that the PWL system has the origin as an equi-
librium point, as discussed at the beginning of Sect. 4.1. In order to find only
nonzero solutions, one can impose (without loss of generality) xk to be greater
than some positive value ε for some chosen k̄. In particular, the constraint
xk̄ " ε can be written in the complementarity form by modifying the con-
straints on some samples of the vector x. For instance, one can set ℓxk̄,1

= ε
and uxk̄,1

= +∞, where ℓxk̄,1
, uxk̄,1

are the lower bound and the upper bound

of the first component of x at the time k̄. Note that the approach presented
above is not required in the case of an unknown period, indeed such further
constraint affects the phase condition of the solution which is already deter-
mined by the anchor equation.
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5 Examples

In this section, the effectiveness of the proposed technique for the computation
of period and waveform of oscillations is shown by considering PWL systems
with different steady-state behaviors. We present a neural oscillator and a
deadzone feedback system, which have solutions belonging to class C1. The
second group of examples, including a stick-slip system and a repressilator,
present oscillations of class C0. The computation of the periodic solution and
the corresponding period is obtained by solving a MQCP with the matrices
given in (18).

For all the following examples, we have computed the ‘exact’ steady-state
solution of the discretized system by constructing the nonlinear closed-loop

map. The idea for obtaining such map is to consider the solutions of the differ-
ential state equations, which model the ‘modes’ of the system, and to cascade
them in order to link a sampled state to the next sample. It is important to
highlight that the exact solution can be analytically obtained only if the se-
quence of modes is known. We numerically show that by varying the number
of samples per period, i.e., by improving the resolution of the discretization,
the error between the solution obtained with the MQCP and the exact one
decreases. The maximum number of samples is chosen for a reasonable com-
putational effort to perform the MATLAB code on a Intel Core i7 clocked
at 2.40 GHz. The complementarity problems have been solved by using the
PATH solver [32]. The numerical results are also compared by varying the
discretization parameters.

5.1 Stable periodic solution in a neural oscillator

The dynamical model of a neural network consisting of η mutually inhibiting
neurons with adaptation can be represented in the following form [42]:

τ1χ̇i = −χi − κvi − ν
η

∑

j=1,j ̸=i

uj + ec (30a)

τ2v̇i = −vi + ui (30b)

ui = max{0,χi}, (30c)

with i = 1, . . . , η. Here, χi is the membrane potential of the i-th neuron, vi
represents the degree of adaptation, ec is the total input from outside the
network that is assumed positive and constant with the time, τ1 is a time
constant, τ2 and κ are the parameters that specify the time course of the
adaptation and ν indicates the strength of the inhibitory connection between
the neurons. In [42], it is shown that for certain values of the model parameters,
the neural network has no stable equilibrium points and produces sustained
oscillations. In the following, we consider a neural network with two neurons,
i.e., η = 2. For the neuron 1 and the neuron 2, let us denote by x1 and x3 the
state variables that represent the membrane potential, respectively, and by x2
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Fig. 3 Neural oscillator scheme.
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Fig. 4 Stable periodic steady-state oscillation of the neural oscillator projected into the
(x1, x3) plane.

and x4 the state variables for the degree of self-inhibition, respectively. Then
the neural oscillator can be represented in the form (3) with the following
matrices

Au =

⎡

⎢

⎢

⎣

− 1
τ1

− κ
τ1

0 0
0 − 1

τ2
0 0

0 0 − 1
τ1

− κ
τ1

0 0 0 − 1
τ2

⎤

⎥

⎥

⎦

, Bu =

⎡

⎢

⎢

⎣

0 − ν
τ1

1
τ2

0
− ν

τ1
0

0 1
τ2

⎤

⎥

⎥

⎦

, eu =

⎡

⎢

⎢

⎣

ec
0
ec
0

⎤

⎥

⎥

⎦

, (31a)

Cu =

[

1 0 0 0
0 0 1 0

]

, Du =

[

0 0
0 0

]

, fu =

[

0
0

]

. (31b)

The relation R = col(R1,R2) represents the inhibitory connection between
the two neurons, with Ri that corresponds to λi = max{0, yi}, i = 1, 2, so as
indicated by (30c). Each Ri can be modeled as in (4) with µi = 1, βRi

= 0,
ℓi = 0 and ui = +∞, and they can be ‘linked’ to the system by choosing
Hu = −I2 and Hy = I2, in (3c) and (3d), respectively. By using (6), the
neural model network is recast in form (7a) and (7b) and the feedback relation
is represented by the complementarity form discussed above.

In [43], it is shown that by considering the parameters τ1 = 0.1 s, τ2 =
0.2 s, κ = 2, ν = 2 and ec = 1, the system has a locally stable periodic
oscillation. Figure 4 shows the solution computed by solving the corresponding
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Fig. 5 Neural system. Error in the steady-state solution computation obtained with differ-
ent discretization techniques and with N ∈ [50, 600]: maximum error in the x2 trajectory.

MQCP with N = 600, θ = 0.5 and γ = 0.5 that yields a value of the period
T = 0.8973 s. The neural system has also a constant unstable solution in
[0.2, 0.2, 0.2, 0.2], that was eliminated by following the procedure presented
in Sect. 4.1. Let us consider the error between the exact solution and the
solution computed with the complementarity approach by varying the number
of samples per period and the parameters θ and γ. Since the relation R is a
Lipschitz continuous function of x, the solution is expected to belong to the
class C1. As suggested in [3], in the case of solutions of class C1, it is possible
to compute the solution of the discretized system by varying both θ and γ
in order to obtain the pair which provides the best accuracy for the solution.
Figure 5 shows the evolution of the maximum error in the computation of the
x2 trajectory, while in Fig. 6 it is reported the error for the period computation.

As one could expect, the error decreases when the number of samples in-
creases. For θ = 0.5 and γ assuming values between 0.5 and 1, the accuracy
is improved, but we do not achieve order 2 when γ = 0.5. This in mainly due
to the lack of regularity of the computed solution. This phenomenon is gener-
ally observed when higher order methods are used for a solution with limited
smoothness, see [4, §9.1].

5.2 Unstable periodic solution in a deadzone feedback system

The deadzone behaviour is typical in many real actuator systems, including
mechanical connections, hydraulic servo valves, piezoelectric translators, and
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Fig. 6 Neural system. Error in the period computation obtained with different discretiza-
tion techniques and with N ∈ [50, 600].

y

λ

1-1

Fig. 7 Deadzone characteristic.

electronic circuits. A graphical representation is given in Fig. 7 and an ana-
lytical description is presented below

λ =

⎧

⎪

⎨

⎪

⎩

y − 1 if y > 1

0 if − 1 ! y ! 1

y + 1 if y < −1

. (32)
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Fig. 8 Nyquist diagram of the transfer function of the dynamical system (continuous line)
together with the representation of the negative reciprocal of the deadzone describing func-
tion (dashed line).

In this section, we analyze the steady-state periodic behaviour of the dynamical
system in form (3) with the following matrices

Au =

⎡

⎣

0 1 0
0 0 1
0 −3 −4

⎤

⎦ , Bu =

⎡

⎣

0
0
20

⎤

⎦ , eu =

⎡

⎣

0
0
0

⎤

⎦ , (33a)

Cu =
[

1 0 0
]

, Du = 0, fu = 0, (33b)

and whose feedback characteristic is the deadzone in Fig. 7. Note that A is
not Hurwitz, then self-induced oscillation are possible [44].

The dynamical system is a low-pass filter and the polar diagram intersects
the negative real axis, so the closed-loop system is a good candidate for the
application of the describing function technique [45]. The value of the approx-
imated period is computed by considering the oscillation frequency ω∗ corre-
sponding to the point in which the polar diagram of G(jω) (continuous line
in Fig. 8) intersects the negative reciprocal of the describing function graph
(dashed line in Fig. 8). We obtain ω∗ = 1.723 rad/s, then the corresponding
period T ∗ = 3.627 s. Moreover, the orientation of the two curves predicts that
the periodic oscillation is unstable.

The following numerical results show that the proposed complementarity
approach is able to get the periodic behaviour together with the period also in
the case of unstable solutions. The deadzone characteristic can be expressed as
the difference of two saturation-like characteristics, R1 and R2. In particular,
R1 corresponds to λ1 = y1, while R2 is λ2 = sat(y2), that is the unitary
saturation function. These two relations can be modelled as in (4) by choosing
for R1, µ1 = 0, βR1

= 0, ℓ1 = −∞ and u1 = +∞, while for R2, µ2 = 1, βR2
=

0, ℓ2 = −1 and u2 = +1. Then we choose Hu =
[

1, −1
]

and Hy = col(1, 1) in
(3c) and (3d), respectively. By using (6), the dynamical system can be recast
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Fig. 9 Unstable periodic oscillation for the deadzone feedback system: steady-state solu-
tion computed by using the MQCP approach (continuous line) and diverging time-stepping
simulation (dotted line).

in form (7a) and (7b), together with the complementarity representation of
feedback relation discussed above.

Figure 9 shows the periodic solution computed through the proposed tech-
nique, by solving a MQCP with matrices in (18) and, with N = 5400, θ = 0.5
and γ = 0.5, which yields to a value of the period T = 3.6620 s. The dotted
line graph corresponds to the numerical result obtained by implementing a
time-stepping simulation of the initial value problem [3,46], with an initial
condition sufficiently close to the periodic solution (x0 =

[

1.3, −7.848, 4
]

).
The error between the exact solution and the one computed with the com-

plementarity approach has been analyzed by varying the number of samples
per period between 100 and 5400 and by considering values of the parameters
θ and γ in the interval [0.5, 1], see Fig. 10 and Fig. 11. It is possible to prove
that the trivial solution is also a solution of the system considered in this ex-
ample, so the constraint (24) was added to the problem (18) to directly get
the periodic solution.

Qualitatively, the same comments presented for the previous example about
the accuracy of the error can be repeated, see Figs. 5 and 6.

5.3 Sliding periodic solution in a stick-slip system

Let us consider a mass m connected to a spring with elastic constant K, which
is pulled at a constant speed es. Let x1 be the elongation of the spring, and
x2 the mass velocity. Such system can be represented in the form (3) with

Au =

[

0 −1
K
m 0

]

, Bu =

[

0
1
m

]

, eu =

[

es
0

]

, (34a)

Cu =
[

0 1
]

, Du = 0, fu = 0, (34b)
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Fig. 10 Deadzone feedback system. Error in the steady-state solution computation obtained
with different discretization techniques and with N ∈ [100, 5400]: maximum error in the x3

trajectory.
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Fig. 11 Deadzone feedback system. Error in the period computation obtained with different
discretization techniques and with N ∈ [100, 5400].

and R being the friction characteristic represented in Fig. 12, where Fc and
Fs are the Coulomb friction and the stiction force, respectively. As in the
previous example, such characteristic can be obtained as the combination of
two saturation-like characteristics, say R1 and R2. In this case, R1 represents
λ1 = relay(y1), where relay( · ) is the unitary relay characteristic, and R2 is
λ2 = satmR

(y2), where satmR
( · ) is the unitary saturation function where

the nonzero slope of the characteristic is 1/mR. The two relations can be
modelled as in (4) by choosing for R1, µ1 = 0, βR1

= 0, ℓ1 = −1 and u1 = +1,
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and for R2, µ2 = mR, βR2
= 0, ℓ2 = −1 and u2 = +1. Then we choose

Hu =
[

Fs, −(Fs − Fc)
]

and Hy = col(1, 1) in (3c) and (3d), respectively, and
we write the dynamical system in form (7) with the matrices given by (6).

y

λ

−Fc

1/mR

−Fs

Fs

Fc

Fig. 12 Coulomb friction characteristic with Stribeck effect with null viscous friction: y is
the mass velocity and λ is the friction force.

Let us select m = 1 kg, K = 2N/m, Fc = 2.94N, Fs = 5.88N, mR = 1/12,
and es = 2m/s. In [47], it is shown that this system can exhibit complex
behaviors and that, depending on the selection of the integration technique,
it is possible that sticking phases of the mass can be missed by the numerical
simulation. Due to the discontinuity of the PWL relation at y = 0, a solution
belonging to C0 is expected. For such reason, the computation of the periodic
solution and the corresponding period was obtained by solving the MQCP
with matrices given in (18), replacing the anchor equation with the one in (22).
Figure 13 shows that the complementarity approach is able to get the steady-
state periodic behaviour of the system, in which it is possible to recognize
the stick and the slip mode. When the trajectory is in the stick mode the
friction force increases rapidly and stops the motion. The system remains in
the stick mode as long as the spring force is smaller than the stiction force.
After that, the system enters in the slip mode and the mass accelerates subject
to the Coulomb friction. The spring is then compressed and the motion of the
mass stops again and the spring force needs to win again the stiction force.
Such solution is computed by solving the complementarity problem (12) with
N = 1000, θ = 0.5 and γ = 1 that yields a period T = 4.9355 s and by
eliminating the equilibrium point in [Fc/K, es] by following the procedure in
Sect. 4.1. Since the smoothness of the solution is one degree lower with respect
to the previous examples, according to the discretization scheme in [4], we have
fixed γ = 1 and we have varied only θ. The evolution of the error shown in
Figs. 14 and 15 confirms the effectiveness of the proposed approach.
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Fig. 13 Periodic steady-state solution of the stick-slip system. The graphs show the elon-
gation of the spring, x1, the velocity of the mass, x2 and the friction force, λ. The solution
is obtained by fixing N = 1000, θ = 0.5 and γ = 1. The corresponding value of the period
is 4.9355 s.
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Fig. 14 Stick-slip system. Error in the steady-state solution computed with different dis-
cretization techniques and with N ∈ [90, 1080]: maximum error in the x1 trajectory.
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Fig. 15 Stick-slip system. Error in the steady-state period computation obtained with
different discretization techniques and with N ∈ [90, 1080].

5.4 Nonsmooth stable periodic solution in a repressilator

Let us now consider the model of a repressilator, which is a synthetic genetic
regulatory network that uses a cyclic repression structure. In the literature
(see, e.g., [48] and the reference therein) it is shown the existence of oscilla-
tions for a three dimensional system in which the sigmoidal regulation func-
tions that determine the interaction between the elements of the network is
replaced by step functions. The resulting PWL systems have been proposed as
a modelling framework in biology allowing efficient simulations, as confirmed
in [49] where the complementarity approach is used to compute the behavior of
a repressilator in the bacterium Escherichia coli. Such a repressilator consists
of three genes and it can be modelled by considering the evolution of three
variables which represent the concentrations of the proteins Lacl, TetR, and
Cl. Such a repressilator model can be easily put in the form (3) with

Au =

⎡

⎣

−a1 0 0
0 −a2 0
0 0 −a3

⎤

⎦ , Bu =

⎡

⎣

−b1 0 0
0 −b2 0
0 0 −b3

⎤

⎦ , eu =

⎡

⎣

e1
e2
e3

⎤

⎦ , (35a)

Cu =

⎡

⎣

0 0 1
1 0 0
0 1 0

⎤

⎦ , Du = 0, fu = 0, (35b)

and R = col{R1,R2,R3} where

λi =

⎧

⎪

⎨

⎪

⎩

0 if yi > 1

[0, 1] if yi = 1

1 if yi < 1

, (36)
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Fig. 16 Periodic steady-state solution of a repressilator network consisting of three genes.
The graph shows the evolution of the variables x1, x2 and x3 which represent the concentra-
tion of proteins Lacl, Tetr and Cl, respectively. The solution is obtained by fixing N=1080,
θ = 0.5 and γ = 1. The corresponding value of the period is T = 15.1116 s.

and i = 1, 2, 3. Each relationRi can be modelled as the MLCP (4) with µi = 0,
βRi

= −1, ℓi = 0 and ui = 1. Then we choose Hu = I3 and Hy = −I3 in (3c)
and (3d), respectively, and we write the dynamical system in form (7) with
the matrices given by (6).

As showed in [49], the system has an unstable equilibrium point in (1, 1, 1)
and a stable nonsmooth periodic solution. In order to compute such solution
and the associated period, we solve a MQCP with matrices in (18) replacing
the anchor equation with the one in (22).

Figure 16 shows the time evolution of the periodic steady-state for the state
variables, obtained with the proposed approach. The error results in Fig. 17
show that for this particular example the solution is not much sensitive to the
discretization parameters.

6 Conclusions

The mixed quadratic complementarity approach has been proposed for the
computation of periodic solutions in a class of piecewise linear (PWL) systems,
which consist of linear time-invariant systems with PWL feedback relations
representable as linear combinations of saturation-like or step characteristics.
For many practical systems belonging to this class the period and the shape of
the oscillation is difficult to be predicted, then phase conditions acting as an-
chor equations for the periodic solution have been added to the complementar-
ity problem. It has been shown how the discretization of the closed-loop system
together with the periodicity constraint and the phase condition permits to
build a mixed quadratic complementarity problem whose solution corresponds
to the searched periodic solution and to the corresponding period. The effec-
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Fig. 17 Repressilator network. Error in the steady-state solution computation obtained
with different discretization techniques and with N ∈ [30, 1080]: maximum error in the x3
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Fig. 18 Repressilator network. Error in the steady-state period computation obtained with
different discretization techniques and with N ∈ [30, 1080].
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tiveness of the proposed approach has been tested by considering several prac-
tical PWL systems with different steady-state periodic behaviours: a stable
periodic solution in a neural oscillator, an unstable oscillation for a deadzone
feedback system, a sliding orbit in a stick-slip system and a periodic solution
beloging to a repressilator. The simulations, implemented by using different
discretization schemes and sampling frequencies, show the good accuracy of
the proposed approach with respect to the analytical solution, computed by
assuming the a priori knowledge of the modes sequence.
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