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Abstract— The term differential-algebraic inclusions (DAIs)

not only describes the dynamical relations using set-valued

mappings, but also includes the static algebraic inclusions, and

this paper considers the problem of existence of solutions for

a class of such dynamical systems described by the inclusion

d
dt

Px 2 �M(x)

for a symmetric positive semi-definite matrix P 2 Rn⇥n
, and a

maximal monotone operator M : Rn ◆ Rn
. The existence

of solutions is proved using the tools from the theory of

maximal monotone operators. The class of solutions that we

study in the paper have the property that, instead of the

whole state, only Px is absolutely continuous and unique.

This framework, in particular, is useful for studying passive

differential-algebraic equations (DAEs) coupled with maximal

monotone relations. Certain class of irregular DAEs are also

covered within the proposed general framework. Applications

from electrical circuits are included to provide a practical

motivation.

I. INTRODUCTION

Set-valued dynamical systems are particularly useful for
modeling when one does not have complete knowledge of
the system parameters, or when the relation between certain
variables of the system is not necessarily one-to-one. On
other instances, the only information about the variables of
the system appears in the form of an inclusion in a static
set. To handle such scenarios, this article proposes the study
of a relatively new class of differential inclusions, which not
only comprise dynamic evolution of the state variable but
also includes static algebraic set-valued relations. We use
the term differential-algebraic inclusions (DAIs) to describe
such systems, and study the inclusions of the form

d
dt
Px 2 �M(x) (1)

over a compact interval [0, T ], where x : [0, T ] ! Rn

denotes the state trajectory of the system, P 2 Rn⇥n is a
symmetric positive semi-definite matrix and M : Rn ◆ Rn

is a maximal monotone operator (see Definition 1). It is
clear that, due to semi-definiteness of the matrix P , there
are certain static relations encoded in (1) which make it
difficult to study the solutions of system class (1) with
existing tools from the literature and, in particular, the theory
of differential inclusions with maximal monotone operators
cannot be directly applied here.
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For system class (1), if P = I , then the resulting
differential inclusion (DI) ẋ 2 �M(x) is a well-studied
object in the literature [3]. Such DIs form an important
class of set-valued and nonsmooth systems. The applications
of DIs with maximal monotone operator can be seen in
various forms. Certain class of evolution inclusions where
the set-valued dynamics are due to subdifferential of the
indicator function of a convex set are a particular case [9],
which have found useful applications in the modeling of
electrical and mechanical systems [1], [17]. Another instance
of such DIs is observed in differential variational inequalities
[10] which appear in the solutions of the optimal control
problems. More recently, the control design problems for
such systems has also attracted a lot of attention [14], [15].
The study of DAIs (1) is thus aimed at enlarging the class
of systems treated in aforementioned references, and finding
applications which cannot be treated within the existing
frameworks.

Several physical systems are modeled as ordinary differ-
ential equations (ODEs) coupled with maximal monotone
relations. In such cases, it often happens that the set-valued
mappings that describe the maximal monotone relation are
multliplied by non-square matrices which do not render the
resulting map maximal monotone. This problem is solved in
the literature by imposing a passivity relation between the
variables constrained by the maximal monotone relation [2],
[5]. This allows for rewriting the entire system dynamics as
a DI with maximal monotone relation. Going by this line
of thought, one motivation for studying the system class
(1) comes from looking at a system of differential-algebraic
equations (DAEs) (see [16] for details), where the forcing
terms are described by a maximal monotone relation. More
formally, we consider DAEs of the form

d
dt
E x(t) = Ax(t) +Bz(t) (2a)

w(t) = Cx(t) +Dz(t), (2b)

where the variable z(·) is related to w(·) through the relation

w(t) 2 F(�z(t)) (2c)

for some given set-valued maximal monotone operator F :

Rdm ◆ Rdm . When E = I , it was shown in [5] that under
passivity assumption on the quadruple (A,B,C,D), the
system (1) can be rewritten as a differential inclusion of the
form ẋ 2 �M(x) for some maximal monotone M. One can
then invoke the classical results from [3] to obtain existence
and uniqueness of the solutions. Trying to generalize this idea
for a singular E matrix does not always lead to a differential
inclusion with maximal monotone operators. It is shown
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in this paper that under appropriate passivity assumptions
on the matrix quintuple (E,A,B,C,D), system (2) can be
rewritten in the form of inclusion (1), hence the solution
theory for system (1) is also very relevant for studying the
dynamical system (2).

While system (2) already presents a generalization from
the system class studied in [5], the utility of system class (2)
can also be found in the modeling of electrical circuits with
nonsmooth devices such as diodes and switches. An example
is included in Section V for this purpose.

The remainder of the paper is organized as follows: Some
basic definitions from convex analysis and the preliminary
results are stated in Section II. The main result on existence
of solutions for system class (1) appears in Section III. These
results are applied to study DAEs with maximal monotone
relations (2) under passivity assumption in Section IV, fol-
lowed by an illustrative example in Section V.

II. PRELIMINARIES AND MOTIVATION

In this section, we recall the basic definitions and some
standard results which will be used later in the paper.

A. Convex Sets
The results related to analysis of convex sets have been

borrowed from [12], [13]. For a set S ⇢ Rn, we denote the
interior by int(S), the relative interior by rint(S), and the
closure by cl(S). The horizon cone of S , denoted S1, is
defined as

S1 := {x | 9xv 2 S,�v & 0 such that �vxv ! x} .

For S convex, we denote the normal cone to S at x by
NS(x). For a linear map L : Rm ! Rn, the kernel and
range space are denoted by kerL and imL, respectively.
Finally, we define L�1

(S) := {x 2 Rm |L(x) 2 S}.

B. Maximal Monotone Operators
A set-valued mapping F : Rn ◆ Rn is called monotone,

if
hy

1

� y
0

, x
1

� x
0

i � 0, (3)

whenever y
0

2 F(x
0

), y
1

2 F(x
1

).
The domain of the mapping F , denoted dom(F) is the

set {x 2 Rn | F(x) 6= ;}.
Definition 1 (Maximal monotonicity): A monotone map-

ping F : Rn ◆ Rn is called maximal monotone if for every
(x̂, ŷ) 2 Rn⇥Rn\graph(F), there exists (x, y) 2 graph(F)

such that hy � ŷ, x� x̂i < 0. In other words, F is maximal
monotone if an enlargement of graph(F) is not possible
without destroying monotonicity.

Maximal monotonicity is a very important concept in
variational analysis, as one readily sees that the subdiffer-
ential of convex (possibly nondifferentiable) functions are
maximally monotone [13, Theorem 12.17]. The mappings
defined by positive semi-definite matrices are monotone, and
continuous, hence they are also maximally monotone [13,
Example 12.7]. The following characterization of maximal
monotone operators appeared in [8], and will be used in the
derivation of certain results in the paper.

Proposition 1: A set-valued mapping M : Rn ◆ Rn is
maximal monotone if, and only if, the following hold

i) M is monotone,
ii) there exists a convex set SM ✓ dom(M) ✓ cl(SM),

iii) M(x) is convex for all x 2 dom(M),
iv) for all x 2 dom(M), M(x)1 = N

cl(dom(M))

(x),
where, by ii), cl(dom(M)) is a convex set,

v) graph(M) is closed.
As already stated in the introduction, there exist unique

solutions to differential inclusions with maximal monotone
operators on the right-hand side.

Theorem 1: Consider a maximal monotone mapping M :

Rn ◆ Rn, and the differential inclusion

ẋ 2 �M(x), x(0) = x
0

. (4)

For each x
0

2 dom(M), there exists a unique Lipschitz
continuous function x : [0,1) ! Rn such that

• x(t) 2 dom(M) and (4) holds a.e.
• ẋ 2 L1

([0,1),Rn
) and kẋk1  |M0

(x
0

)|, where
M0

(x) denotes the least norm element of the set M(x).
• if x1 and x2 satisfy (4) with initial conditions x1

(0) =

x1

0

and x2

(0) = x2

0

, then

|x
1

(t)� x
2

(t)|  |x1

0

� x2

0

|, 8 t � 0.
There are two commonly used techniques, both somewhat

constructive, for proving the result of Theorem 1. The
first one relies on introducing a sequence of single-valued
Lipschitz functions which converge to the least-norm element
of the set-valued mapping M in the limit. The solutions of
the resulting differential equations, called the Yosida-Moreau
approximations, can then be shown to converge to a function
that satisfies the properties listed in Theorem 1.

The second technique relies on constructing a sequence of
piecewise constant functions. Each element of this sequence
corresponds to a discrete approximation of the inclusion
(4) with a certain sampling period. As the sampling period
converges to zero, the corresponding sequence is shown to
converge to the unique solution of system (4), see [3], or a
more recent survey [11], for details on proof techniques.

C. Theoretical Motivation

We now state an academic example comprising a system
of the form (2) which can not be represented as ẋ 2 �M(x)
for a maximal monotone M. For that, consider the system
(2) defined by the quintuple

(E,A,B,C,D) =

⇣h
1 0 0

0 0 1

0 0 0

i
,
h
0 0 0

0 1 0

0 0 1

i
,
h
1

1

1

i
, [ 1 ↵ 0

] , 0
⌘

(5)
with �z 2 F�1

(w) = max{0, w}, and some fixed scalar ↵.
We consider the set-valued operator F(x) := �Ax +

BF�1

(Cx), and it is observed that

x 7! F(x)
0

@
x
1

x
2

x
3

1

A 7!

0

@
max{0, x

1

+ ↵x
2

}
�x

2

+max{0, x
1

+ ↵x
2

}
�x

3

+max{0, x
1

+ ↵x
2

}

1

A .



To ensure that F(x) 2 dom(E�1

) = imE, we must take
x
3

= max{0, x
1

+ ↵x
2

}. This leads to ẋ 2 �M(x) where
the set-valued map M is given by

x 7! E�1

(F(x)), F(x) 2 imE

x 7!

8
<

:

0

@
max{0, x

1

+ ↵x
2

}
�

�x
2

+max{0, x
1

+ ↵x
2

}

1

A
������ 2 R

9
=

; .

By choosing � < x
3

� 2kCxk2

x2
, one can find ŷ 2 E�1

(F(x̂))

such that x̂>ŷ < 0. Thus, the system defined by matrices
in (5) cannot be described by inclusions of the form ẋ 2
�M(x) for some maximal monotone operator M, and hence
the results from existing literature cannot be used to analyze
the solutions for the system class (2). For this reason, we are
motivated to look at the class of inclusions (1).

III. SOLUTIONS OF DAIS

The aim of this paper is to show existence of solution
for system (1). The presence of some algebraic inequalities
require us to define an appropriate concept of solution for
such system class.

Definition 2: We call x : [0,1) ! Rn a solution of (1),
if it satisfies the following two properties:

• For every t � 0, we have x(t) 2 M�1

(imP ),
• Px is Lipschitz continuous, and the inclusion (1) holds

for Lebesgue almost every t � 0.
Based on this definition, we now state the first main result

of this paper on existence of solutions for the DAI (1).
Theorem 2: Consider system (1) and assume that P is a

symmetric positive semidefinite matrix, and M is a maximal
monotone operator. Assume that

rint(imM) \ imP 6= ;. (6)

Then, for each x
0

2 M�1

(imP ), there exists a solution x
with x(0) = x

0

in the sense of Definition 2 such that
• d

dtPx 2 L1
([0,1),Rn

), and k d
dtPxk1  c0(x(0)),

where c0(x(0)) is a constant that depends on the initial
condition.

• if x1 and x2 are two solutions to (1), then

|Px1

(t)� Px2

(t)|  �P |x1

(0)� x2

(0)|

for some constant �P > 0. In particular, Px is unique.
• there exists a matrix Q 2 R(n�rankP )⇥n, and a

time-varying convex-valued mapping1 S : [0,1) ◆
Rn�rankP such that for t � 0:

kerQ = imP, and Qx(t) 2 S(t).
The above theorem states that, under condition (6), solu-

tions of (1) starting from an admissible set are defined for
all times. However, the solutions are not necessarily unique.
It is observed that, a certain part of the solution described
by Px is sufficiently regular and uniquely determined. The
rest of the solution, which is not necessarily unique, is
described by Qx. At this moment, we only introduce the
time-varying set S(t) to which this nonunique component

1The exact construction of S(·) is a part of the proof of Theorem 2.

belongs and essentially it comes from solving the static
algebraic inclusion in (1). Whether it is possible to make
a selection from the multivalued component S(·) which
satisfies some regularity conditions, is still a topic under
investigation. For the proof of Theorem 2, we first state two
intermediate lemmas.

Lemma 1: Let P = P> � 0 and let M : Rn ◆ Rn be a
maximal monotone operator. Then there exists cM : Rn ◆
Rn maximal monotone and a coordinate transformation ⇠ =

Hx such that

d
dt
Px 2 �M(x) () ⇠ = Hx ^ d

dt


I 0

0 0

�
⇠ 2 �cM(⇠).

Proof: Since P is symmetric, it is diagonalizable with
an orthogonal coordinate transformation, i.e. there is an
invertible matrix V with V �1

= V > and a diagonal full
rank matrix P

1

such that

P = V >

P
1

0

0 0

�
V = V >


P

1/2
1

0

0 I

� 
I 0

0 0

� 
P

1/2
1

0

0 I

�
V.

Let us now define the matrix H and the operator cM as

H :=


P

1/2
1

0

0 I

�
V and cM(⇠) := H�>M(H�1⇠)

then kerP = ker [

I 0

0 0

]H . Hence, d
dtPx exists if and only if

d
dt [

I 0

0 0

]Hx exists, which results in

d
dt
Px 2 �M(x) () ⇠ = Hx ^ d

dt


I 0

0 0

�
⇠ 2 �cM(⇠).

To show that cM is maximal monotone, we make use of
the characterization given in Proposition 1. Using the fact
that M being maximal monotone already satisfies the five
listed properties, it is now shown that the same holds for cM.

i) To check monotonicity, take zi 2 H(domM) and yi 2
cM(zi), for i = 1, 2, then (H>yi, H

�1zi) 2 graph(M),
and it follows that

hy
1

� y
2

, z
1

� z
2

i =
⌦
H>

(y
1

� y
2

), H�1

(z
1

� z
2

)

↵
� 0.

ii) It is noted that dom cM = H(domM), and the desired
inclusions follow by taking ScM = HSM.

iii) For each z 2 H domM, M(H�1z) is convex, and so
is H�>M(H�1z) = cM(z).

iv) Since cl(domM) is convex, then so is cl(dom

cM) =

cl(H domM). Moreover,

(

cM(z))1 = H�>
(M(H�1z))1

= H�>N
cl(dom(M))

(H�1z)

= N
cl(H dom(M))

(z).

v) Using the fact that H�1 is single-valued and linear, it
can be shown that graph(cM) is closed.

This completes the proof.
Lemma 2: Consider a maximal monotone mapping cM :

Rn ◆ Rn, and decompose ⇠ 2 Rn as ⇠ := (⇠>
1

, ⇠>
2

)

>

with ⇠i 2 Rni , i = 1, 2. Assume that rint(im cM) \ (Rn1 ⇥



{0}n2
) 6= ;. Then, for each ⇠(0) 2 Scons :=

cM�1

(Rn1 ⇥
{0}n2

), the following differential inclusion
✓
˙⇠
1

0

◆
2 �cM(⇠) (7)

has a solution ⇠ : [0,1) ! Rn, with ⇠(t) 2 Scons for each
t � 0, such that

• ⇠
1

is unique and Lipschitz continuous,
• ˙⇠

1

2 L1
([0,1),Rn1

), and | ˙⇠
1

|  c1(⇠(0)), for some
constant c1 depending on ⇠

1

(0).
• ⇠

2

(t) 2 bS(t), where bS : [0,1) ◆ Rn2 is a convex-
valued operator.

Remark 1: Roughly speaking the statement of Lemma 2
says that the solution of (7) has some regularity associated to
the ⇠

1

component, while ⇠
2

may not even be single-valued. In
the proof of this lemma, we express ⇠

1

as a solution to a re-
duced order differential inclusion with a maximal monotone
operator which guarantees the uniqueness, regularity, and the
bounds on its derivatives. For ⇠

2

, we are able to compute a
time-varying set-valued mapping bS , such that any selection
of ⇠

2

(t) 2 bS(t) would constitute a solution. It is not clear
at this point whether bS satisfies some continuity condition
(in the sense of set-valued mappings), so that appropriate
regularity claims can be made for ⇠

2

.
Proof of Lemma 2. Let G(y) := cM�1

(y), and define G
1,0 :

Rn1 ! Rn1 as

G
1,0(y1) :=

n
⇠
1

2 Rn1

��� 9 ⇠
2

2 Rn2 satisfying
✓
⇠
1

⇠
2

◆
2 G

✓
y
1

0

◆�
.

Since rint(im

cM)\ (Rn1 ⇥{0}n2
) 6= ;, there is a y

1

2 Rn1

such that
✓
ȳ
1

0

◆
2 rint(im

cM) = rint(domG), which shows

that G
1,0 is maximal monotone [13, Exercise 12.46].

For the given initial condition ⇠(0) 2 Scons, it follows that
⇠
1

(0) 2 imG
1,0 = domG�1

1,0 . Hence, due to Theorem 1, there
exists a unique Lipschitz continuous ⇠

1

(t) that satisfies the
differential inclusion

˙⇠
1

(t) 2 �G�1

1,0(⇠1(t)) (8)

almost everywhere. It also follows from the same result that
˙⇠
1

2 L1
([0,1),Rn1

) and k ˙⇠
1

k1  (G�1

1,0)
0

(⇠
1

(0)).
Next, for a fixed ȳ

1

2 Rn1 , define G
2,ȳ1 : Rn2 ! Rn2 as

G
2,ȳ1(y2) :=

n
⇠
2

2 Rn2

��� 9 ⇠
1

2 Rn1 satisfying
✓
⇠
1

⇠
2

◆
2 G

✓
ȳ
1

y
2

◆�
.

Following the same arguments as in the case of G
1,0, it can

be shown that G
2,ȳ1 is maximal monotone. We define bS :

Rn2 ! Rn2 as
bS(t) := G

2,y1(t)(0),

where y
1

(t) := � ˙⇠
1

(t) is the function satisfying (8). Clearly,
bS(t) is convex-valued as it is the image of a point under a

maximal monotone operator. We choose ⇠
2

(t) 2 bS(t) as a
part of the solution to (7).

To see that, the aforementioned construction of ⇠
1

and ⇠
2

is a solution to (7), it is seen that
✓
⇠
1

(t)
⇠
2

(t)

◆
2
✓
G
1,0(� ˙⇠

1

(t))
G
2,� ˙⇠1(t)

(0)

◆
()

✓
⇠
1

(t)
⇠
2

(t)

◆
2 G

✓
� ˙⇠

1

(t)
0

◆

()
✓
˙⇠
1

(t)
0

◆
2 �cM

✓
⇠
1

(t)
⇠
2

(t)

◆
.

This completes the proof of Lemma 2. ⌅
We now combine Lemma 1 and Lemma 2 to write a formal

proof of Theorem 2.
Proof of Theorem 2. Applying the transformation ⇠ = Hx
as described in Lemma 1, we obtain

✓
˙⇠
1

0

◆
2 �cM(⇠).

It is verified that the condition (6) leads to rint(im

cM) \
(Rn1 ⇥ {0}n2

) 6= ;, and that cM�1

(Rn1 ⇥ {0}n2
) =

M�1

(imP ). Hence, using Lemma 2, there exists a unique
Lipschitz continuous ⇠

1

, and a time-varying convex set S⇠ :

[0,1) ◆ Rn�rankP with ⇠
2

(t) 2 S⇠(t) as the admissible
solution. It easily follows that

Px = H>

I 0

0 0

�✓
⇠
1

⇠
2

◆
=

✓
⇠
1

0

◆

showing that Px is Lipschitz continuous and the bound on
k d

dtPxk1 is obtained directly from the bound on k ˙⇠
1

k1. It
is also observed that

|Px1�Px2| 
��H>

(⇠1
1

� ⇠2
1

)

��  kHk kH�1k |x1

(0)�x2

(0)|.
For the multivalued component, one may choose Q :=⇥
0 I

⇤
H , so that Qx = ⇠

2

, and the conclusion then follows
from the statement of Lemma 2. ⌅

IV. PASSIVE DAES WITH MAXIMAL MONOTONE
RELATIONS

We now address the problem of existence of solutions of
DAEs of the form

d
dt
E x(t) = Ax(t) +Bz(t) (9a)

w(t) = Cx(t) +Dz(t), (9b)

where the variable z(·) is related to w(·) through the relation

w(t) 2 M(�z(t)) (10)

and M : Rn ◆ Rn is a maximal monotone operator. The
basic idea behind studying the solutions of this system is to
use the passivity notion to obtain an equivalent representation
of the system which is then transformed to the inclusion of
the form (1). We thus recall the passivity notion for DAEs
and then describe the related transformations.

Definition 3 (Solution concept): We call (x, z, w) :

[0,1) ! Rn+2m, a solution to system (2) if the following
hold:

• Ex is absolutely continuous and the DAE (9a) holds
for Lebesgue-almost every t � 0,

• �z(t) 2 dom(M) for each t � 0,
• the relations (9b) and (10) holds for each t � 0.



A. Passivity: Definition and Characterization
Definition 4: We call the system (9) passive with storage

function V : Rn ! R
+

if

V (x(t
1

))  V (x(t
0

)) +

Z t1

t0

z>(t)w(t) dt

for all t
0

, t
1

, t
1

� t
0

and (x,w, z) solves (9).
The following result is derived in [4], [7]:
Proposition 2: System (9) with minimal (E,A,B,C,D)

is passive with storage function x>Kx for K = K> � 0 if,
and only if, the following two statements hold:

• There exist matrices S, T 2 Rn⇥n that transform the
system matrices in the special Weierstrass form:

(SET, SAT, SB,CT ) =
✓h

I 0 0

0 0 I
0 0 0

i
,
h
A1 0 0

0 I 0

0 0 I

i
,


B1
B2
B3

�
, [C1 C2 C3 ]

◆
,

(11)

• The matrix K can be decomposed as

K = K>
=

2

4
K

11

0 0

0 0 0

0 0 K
33

3

5 � 0 (12)

and the submatrices in (11) satisfy the matrix inequaliy

A>

1

K
11

+K
11

A
1

K
11

B
1

� C>
1

B>
1

K
11

� C �(

eD +

eD>
)

�
 0, (13)

where eD := D � C
2

B
2

� C
3

B
3

and lastly

B>
3

K
33

= �C
2

. (14)
From the classical Kalman-Yakubovich-Popov lemma for or-
dinary differential equations, it readily follows from (13) that
the quadruple (A

1

, B
1

, C
1

, eD) describe a passive system.

B. Equivalence to DAIs
We now use the aforementioned passivity characterization

to write the system (9)–(10) in the form of inclusion (1). The
following lemma is crucial for that purpose.

Lemma 3: Let (E,A,B,C,D) be minimal and passive
with quadratic storage function. There exists a full row
rank matrix Px1 2 Rn1⇥n where n

1

< n and
h
A1 B1

C1
eD

i
2

R(n1+m)⇥(n1+m) with (A
1

, B
1

, C
1

, ˜D) passive such that for
the DAE

d
dt


I 0

0 �B>
3

K
33

B
3

�✓
x
1

z

◆
=


A

1

B
1

C
1

eD

�✓
x
1

z

◆
�

0

I

�
w

(15)
the following equivalence between (9) and (15) holds:

{(Px1x, z, w) | (x, z, w) solves (9)}
= {(x

1

, z, w) | (x
1

, z, w) solves (15) ^B
3

z is abs. cont.} .
Proof: From Proposition 2, we obtain the matrices

S, T so that the solution triplet (x, z, w) of system (9) with
col(x

1

, x
2

, x
3

) = T�1x satisfies

ẋ
1

= A
1

x
1

+B
1

z (16a)
ẋ
3

= x
2

+B
2

z (16b)
0 = x

3

+B
3

z (16c)
w = C

1

x
1

+ C
2

x
2

+ C
3

x
3

+Dz (16d)

Next we use the notation introduced in Proposition 2, and
recall that C

2

= �B>
3

K
33

for some positive semidefinite
K

33

. Multiplying (16b) by B>
3

K
33

, and inserting (16c) as
well as (16d), we arrive at

� d
dt
B>

3

K
33

B
3

z = C
1

x
1

+(D�C
2

B
2

�C
3

B
3

)z�w. (17)

With Px1 defined as

Px1 :=

�
I 0 0

�
T�1 (18)

the inclusion “✓” is proven.
To show the converse inclusion let (x

1

, z, w) be a so-
lution of (15) and let x

3

:= �B
3

z, x
2

:= �B
2

z �
d
dtB3

z, then (x
1

, x
2

, x
3

, z, w) solves (16) and hence⇣
T
�
x>
1

x>
2

x>
3

�>
z w

⌘
solves (9).

This lemma is the key component in proving the following
main result of this section:

Theorem 3: Assume that (E,A,B,C,D) is minimal and
passive with quadratic storage function x>Kx. Consider the
DAI

d
dt
Px 2 �M(x), (19)

where using the notation from Lemma 3,

x :=

✓
x
1

�z

◆
, P :=


K

11

0

0 B>
3

K
33

B
3

�
, (20)

M(x) = �

K

11

A
1

�K
11

B
1

C
1

� eD

�
x+

✓
0

M(�z)

◆
(21)

so that P is a positive semidefinite matrix and M is maximal
monotone. Then (9)–(10) is equivalent to (19) in the sense
that

{(Px1x, z) | (x, z, w) solves (9)}
= {(x

1

, z) | (x
1

, z) solves (19) ^B
3

z is abs. cont.}

where Px1 is defined in (18).
Proof: Once we have arrived at (15) in Lemma 3,

then we can apply transformations (20) and (19) follows
readily. By construction, P is positive semidefinite, and it
only remains to show that M is maximal monotone.

Since (A
1

, B
1

, C
1

, eD) is passive, it follows that

A =


K

11

A
1

�K
11

B
1

C
1

� eD

�

is negative semidefinite. The result is immediate using the
fact that


K

11

A
1

+A>
1

K
11

C>
1

�K
11

B
1

C
1

�B>
1

K
11

�(

eD +

eD>
)

�

=


I 0

0 �I

� 
K

11

A
1

+A>
1

K
11

K
11

B
1

� C>
1

B>
1

K
11

� C
1

�(

eD +

eD>
)

� 
I 0

0 �I

�

is negative semidefinite. The function �Ax, being continu-
ous, is thus maximal monotone with domain equal to entire
space. Using [13, Chapter 12], the sum of two maximal
monotone operators is maximal monotone, and its domain
is the intersection of the corresponding domains. Thus, M
is maximal monotone with dom(M) = dom(M).



Vbb
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jL
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�
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e

Fig. 1. Simple circuit example

V. CIRCUIT EXAMPLE

Let us consider the RLC circuit in Fig. 1 supplied by a
constant voltage source (a battery) and interconnected with
a Zener diode (see its input-output characteristic in Fig. 2).
The modified nodal analysis approach [6] allows us to derive
the following equations:

Cc
de

dt
= �R�1e� jL � jV + jZ (22a)

L
djL
dt

= e (22b)

0 = e� Vbb, (22c)

that can be rewritten as a DAE by assuming a state vector�
e jL jV

�
, an exogenous input vector z =

�
jZ Vbb

�

and w =

�
�vZ �jV

�
as output of interest. Note that

w 2 M(�z) where M is a maximal monotone set-valued
mapping whose graph is in R2 ⇥ R2, see Figure 2a. The
corresponding matrices are

E =

⇣
Cc 0 0

0 L 0

0 0 0

⌘
, A =

⇣
�R�1 �1 �1

1 0 0

1 0 0

⌘
, (23a)

B =

⇣
1 0

0 0

0 �1

⌘
, C =

�
1 0 0

0 0 �1

�
, D = (

0 0

0 0

) . (23b)

By choosing

S =

✓
0 L�1 �L�1

�1 0 �R�1

0 0 �Cc

◆
, T =

✓
0 0 �C�1

c
1 0 0

�1 1 0

◆
(24)

the representation (16) is obtained with x
1

= jL, x
2

= jL+

jV , x
3

= �Cce:

ẋ
1

= L�1Vbb (25a)
ẋ
3

= x
2

� jZ +R�1Vbb (25b)
0 = x

3

+ CcVbb. (25c)

In this case we have A
1

= 0, B
1

=

�
0 L�1

�
, C>

1

=�
0 1

�
, ˜D =

�
0 1

�1 R�1

�
, K

11

= L, K
22

= 0, K
33

= Cc.

vZ

jZ

�VZ

(a) Zener diode voltage-current
characteristic

jV

Vbb

(b) Battery current-voltage
characteristic

Fig. 2. Set-valued mappings of the circuit example

The matrix inequality (13) is satisfied and the system evolves
according to the differential inclusion (19) with

P =

0

@
L 0 0

0 0 0

0 0 Cc

1

A , (26)

and

M(x) = �

0

@
0 0 1

0 0 1

�1 �1 1/R

1

Ax+

✓
0

M(�z)

◆
. (27)

VI. CONCLUSIONS

We have studied the existence of solutions of a novel class
of dynamical systems described by differential-algebraic
inclusions. Tools from the theory of maximal monotone
operators have been used to prove existence of solutions
globally in time. The results were used to study well-
posedness of DAEs coupled with maximal monotone re-
lations under certain passivity assumption. Applications of
such systems are found in certain electrical circuits with
nonsmooth devices such as diodes or transistors.
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