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Abstract— In this paper we consider a distributed solution

of the model predictive control problem (DMPC), based on

the block version of the Jacobi algorithm applied to the dual

problem. In order to accelerate the convergence, a Nesterov’s

schema can be considered, but the updating rule coming out in

such way is fully distributed and parallel, but synchronous. This

assumption is often unrealistic in real-life large-scale systems.

For this reason an asynchronous version of the method has been

proposed and the convergence properties have been studied.

Numerical experiments show the effectiveness of the approach

by comparing it with the methods presented in the literature.

Index Terms— Distributed model predictive control, net-

works, convex optimization.

I. INTRODUCTION

During the recent years, the use of MPC control strategy
for designing high performance model-based controllers has
increased enormously due to its methodical way to optimize
the behavior of dynamic systems taking into account system
states and control input constraints. However, the size of the
optimization problems faced today by engineers has grown
and a centralized solution is sometime impossible to find.
The idea behind DMPC is decomposing the global opti-
mization problem into smaller problems assigned to a certain
number of entities with limited computational capacities and
local vision of the problem [1]; they have to cooperate
themselves to reach the global optimum.

The problem can be easily found in many applications
such as the control of large-scale power networks [2]; the
integration of electrical vehicle charging control into power
grid [3]; the control of water flow delivery canals [4]; and
the control of air conditioning for buildings [5].

In general, the distributed iterative methods rely on the
classical gradient algorithms to solve the dual optimization
problem. They are suitable for both small and large scale
problem and recently they have been applied to DMPC [6].
Despite their simplicity and low complexity, the gradient
methods suffer from slow converge rate (O(1/k)), [7]. The
minimization of constrained smooth functions by gradient
algorithms has been accelerated by using a Nesterov’s ap-
proach in [8], such that a O(1/k2) rate is achieved. That
result has been used by [9] for DMPC problems.

Another way to accelerate a distributed algorithm is
to apply the alternating direction method of multipliers
(ADMM) [10]. They rely on the decomposability property
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of the augmented dual problem and they show robust con-
vergence properties. The ADMM has been used for solving
DMPC in [1] (Ch. 7) and [4].

In this paper, we study the application of an accelerated
non-smooth second order Newton method for solving the
DMPC problem. Starting from the dual problem we use the
parallel Jacobi method to approximate the Newton descent
direction [11]. The proposed approach is partially inspired
by [12], where a structured block diagonal Hessian is com-
puted offline by solving an SDP problem. However, that work
suffers from scalability issues since the offline problem is
solved every time the network changes, it is centralized and
memory consuming, as stated by the authors. In addition,
the cooperative DMPC algorithms presented in the literature
require a strong synchronization among all the nodes to make
the correct exchange of data. The requirement of a global
clock to be instantaneously propagated to all the systems
in a large-scale system is quite unrealistic and it limits
practical application [13]. For this reason, we investigated
an asynchronous version of the accelerated method, together
with its convergence properties. The comparison with the
most recent distributed methods for DMPC (i.e., [9], [10],
[12]) is shown through some numerical and application
examples.

II. PROBLEM SETUP

We consider a linear time-invariant discrete-time system
composed of N local subsystems. The state space model of
the full system is

x(t+ 1) = Ax(t) +Bu(t), x(0) = x̂,

where x(t) 2 Rn and u(t) 2 Rm are the state and input
vector, respectively, at time t, obtained by stacking in one
column the local states x

i

(t) 2 Rn

i and the manipulated
variables u

i

(t) 2 Rm

i for each subsystem, i.e., x(t) =

[x1(t)>, . . . , xN

(t)>]>, u(t) = [u1(t)>, . . . , uN

(t)>]>. The
subsystems dynamic can be written as

x
i

(t+ 1) =
NX

j=1

(A
ij

x
i

(t) +B
ij

u
i

(t)) , x
i

(0) = x̂
i

,

where A
ij

2 Rn

i

⇥n

j and B
ij

2 Rn

i

⇥m

j are the ij-th block
of the full state matrix A and input matrix B, and they define
the interactions among the subsystem i and the subsystem j.
Indeed, it usually happens that matrices A and B are sparse,
i.e., A

ij

= 0 and B
ij

= 0 for most i, j 2 V .
The full system can be also modeled by a directed graph

G = {V, E} where the set of nodes V = {1, . . . , N}
represents the local subsystems, and the set of links E ✓
V ⇥ V models the subsystems interactions:

E = {(i, j) |A
ij

6= 0 _B
ij

6= 0, i, j 2 V}. (1)
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The set of neighbors of node i is defined as N
i

= {j :

(i, j) 2 E}. The nodes are able to exchange information
among them through a communication network whose graph
is assumed being coincident with G.

For each node i local quadratic stage and
terminal costs are associated: `

i

(x
i

(t), u
i

(t)) =

1
2

�

x
i

(t)>Q
i

x
i

(t) + u
i

(t)>R
i

u
i

(t)
�

, `
T,i

(x
i

(T )) =

1
2

�

x
i

(T )>S
i

x
i

(T )
�

respectively; where Q
i

2 Rn

i

⇥n

i ,
R

i

2 Rm

i

⇥m

i and S
i

2 Rn

i

⇥n

i are assumed symmetric
positive definite. This leads to the following separable cost
functions for the entire plant:

`(x(t), u(t)) =
NX

i=1

`
i

(x
i

(t), u
i

(t)) =
1

2

⇣
x(t)>Qx(t) + u(t)>Ru(t)

⌘

`
T

(x(T )) =
NX

i=1

`
T,i

(x
i

(T )) =
1

2
x(T )>Sx(T ), (2)

with Q = blkdiag(Q1, . . . , QN

), R =

blkdiag(R1, . . . , RN

) and S = blkdiag(S1, . . . , SN

).
Moreover, the local variables x

i

(t) and u
i

(t) are required
to be bounded for each time t by the box constraints:

X
i

= {x
i

(t) |x
i

6 x
i

(t) 6 x
i

}, U
i

= {u
i

(t) |u
i

6 u
i

(t) 6 u
i

},

for all i 2 V , with ¯R = R [ {±1} the extended real-
line. These sets lead to the global constraints x(t) 2 X =

X1 ⇥ · · ·⇥ X
N

, u(t) 2 U = U1 ⇥ · · ·⇥ U
N

.
Fixing the initial state x(0) and a control horizon T , the

finite horizon constrained optimization problem to be solved
in the DMPC scheme is

J
T

:= min
x,u

`
T

(x(T )) +
T�1X

t=0

`(x(t), u(t))

s. t. x(t+ 1) = Ax(t) +Bu(t), t = 0, . . . , T � 1

x(t) 2 X , u(t) 2 U , t = 0, . . . , T � 1 (3)
x(T ) 2 X ,

x(0) = x̂.

The problem (3) is then formulated as a constrained
quadratic optimization problem:

min
z2Z

1
2
z>Hz

s. t. Cz = c,

where z = [x>,u>
]

>, x = [x(1)>, . . . , x(T )>]>,
u = [u(0)>, . . . , u(T � 1)

>
]

>, Z = X ⇥ U , H =

blkdiag (Q, . . . , Q, S,R, . . . , R) and

C =

2

664

I 0 · · · 0 �B 0 · · · 0
�A I · · · 0 0 �B · · · 0

...
. . .

. . .
...

...
. . .

. . .
...

0 · · · �A I 0 0 · · · �B

3

775 , c =

2

664

Ax̂
0
...
0

3

775 .

The dual problem is then considered by introducing the
multipliers � 2 RnT corresponding to the dynamic con-
straints:

q̂(�) := min
z2Z

1
2
z>Hz � h�,Cz � ci. (4)

We refer to L(z,�) = 1
2z

>Hz�h�,Cz�ci as the Lagragian
function, and q̂(�) as the dual function.

Since `
i

(x
i

(t), u
i

(t)) and `
T,i

(x
i

(T )) are strictly convex
8i, t, if the optimization problem is feasible then the duality

gap is zero [14]. Thus, we can solve the dual (4) and compute
the associated primal optimal variables as:

z(�⇤) = argmin
z2Z

L(z,�⇤) (5)

where �⇤ is the optimal value of the dual function. By
exploiting the separability properties of cost functions (2)
the optimal states x⇤

i

and control inputs u⇤
i

components are:

x
i

(t,�⇤) = argmin
y2X

i

1

2
y>Q

i

y + y>

0

@
X

j2N
i

A>
ji

�⇤
j

(t)� �⇤
i

(t� 1)

1

A

u
i

(t,�⇤) = argmin
v2U

i

1

2
v>R

i

v + v>

0

@
X

j2N
i

B>
ji

�⇤
j

(t)

1

A (6)

x
i

(T,�⇤) = argmin
y2X

i

1

2
y>S

i

y � y>�⇤
i

(T � 1)

where �
i

(t) 2 Rn

i is the vector of dual variables associated
to the dynamic of subsystem i at time t. The computation
of the primals is naturally distributed with respect to the G.

We are therefore interested in computing
�⇤ = argmin

�

q(�), (7)

where, for notational convenience, we introduced the convex
dual function q(�) , �q̂(�).

A. Non-smooth Newton’s method
Newton’s method is a classic iterative procedure for min-

imizing convex functions. Starting with an initial value �0,
we update �k by minimizing q(�) at each step k,

�k+1 = �k + ↵dk, (8)

where ↵ is a properly chosen step size and d is the descent
Newton’s direction. The vector d is solution of the system

V kdk = �gk,

where gk is the gradient of the negative of the dual function
at the step k, i.e., gk = g(�k

) = rq(�k

), and V k

= V (�k

)

is the negative of the dual function Hessian.
Considering (4), we can straightforwardly compute the

gradient g(�) as function of the primal optimizers:

g(�k) = Cz(�k)� c.

The gradient g(�) is Lipschitz continuous with Lipschitz
constant  = kCH�1C>k [15, Th. 7, Rem. 5].

Since g is locally Lipschitz, according to Rademacher’s
Th. [16], g is differentiable almost everywhere. Let D

g

be the
set of the point at which g is differentiable, then the general-
ized Hessian is the set @g(�) = co

n

lim

�!�,�2D

g

rg(�)
o

,
where co defines the convex hull. The Hessian of the
unconstrained (smooth) version of the DMPC problem is the
constant matrix V k

= V = CH�1C>, which is an extreme
point of @g(�). Indeed, for � 2 {�|z(�) 2 Z} we have

lim
�!�,�2D

g

rg(�) = V.

Due to the strict convexity and separability of l(x(t), u(t)),
it follows that H�1 exists and is positive block diagonal.
Furthermore, the structure of matrix C, that is full row
rank, makes V invertible. However, the inverse V �1 is a
dense matrix, and that leads (8) to be not distributed. For
this reason, we looked for a distributed algorithm and we
approximated the Hessian V with its block diagonal version
(see Section III).



B. Nesterov’s acceleration

The accelerated version of the Newton method for prob-
lem (7) is defined by Nesterov’s method [8]:

�̃k = �k +
k � 1
k + 2

(�k � �k�1),

�k+1 = �̃k � ↵V �1g(�̃k),
(9)

for all k, with ��1
= �0. The acceleration consists in

performing a simple step of Newton’s method (8) from ˜�k

to �k+1 and, using ˜�k as a correction of �k based on the
previous value. The correction (9) leads to the accelerated
primal variables z(˜�k

) in (5), so that the gradient becomes

g(�̃k) = Cz(�̃k)� c. (10)

III. DISTRIBUTED NON-SMOOTH NEWTON’S METHOD

The distributed method proposed here is based on the
the Jacobi approach [17] applied to the accelerated Newton
method. Therefore, the approximated descent directions are

d
i

(�̃k) = �V �1
i

g
i

(�̃k), 8i,

where the gradient is computed accordingly to (10) and
the block components of the Hessian matrix are V

i

=

blkdiag(V
t,i

), 8t, with:

V
t,i

=

8
>>>><

>>>>:

Q�1
i

+
P

j2N
i

B
ij

R�1
j

B>
ij

if t = 0

Q�1
i

+
P

j2N
i

A
ij

Q�1
j

A>
ij

+B
ij

R�1
j

B>
ij

if t 2 [1, T -2]

S�1
i

+
P

j2N
i

A
ij

Q�1
j

A>
ij

+B
ij

R�1
j

B>
ij

if t = T � 1.

Therefore, the computation of the gradient g
i

is completely
distributed. According to the definition of C matrix, the node
i requires the accelerated primals from its neighbors N

i

to
compute g

i

(

˜�k

) of (10). The Hessian blocks V
t,i

are also
distributed and they can be computed off-line or whenever a
node is added/removed to/from the network (plug & play).

Thus, the resulting accelerated approximated Newton’s
method for each node i is characterized by the iterations

�̃k

i

= �k

i

+
k � 1
k + 2

(�k

i

� �k�1
i

),

�k+1
i

= �̃k

i

� ↵
i

V �1
i

g
i

(�̃k).
(11)

The distributed update function for the proposed method
is given in the Algorithm 1.

Algorithm 1: update function for node i at step k.
Data: Q

i

, R
i

, S
i

, V
i

, A
ij

, B
ij

| j 2 N
i

, ��1
i

= �0
i

;
1) receive �k

j

from j 2 N
i

;
2) compute x

i

(

˜�k

), u
i

(

˜�k

) according to (6);
3) receive x

i

(

˜�k

), u
i

(

˜�k

) from j 2 N
i

;
4) compute g

i

(

˜�k

) according to (10) and update
�k+1
i

 �̃k

i

� ↵
i

V �1
i

g
i

(�̃k);

A. Convergence analysis
In order to make the convergence analysis easier, we

reformulate the iterations (11) in the following form:

�̃k = (1� �k)�k + �k�k�1,

�k+1 = �̃k �AV̂ �1g(�̃k),
(12)

where �k

=

1�✓

k�1

✓

k

with ✓k =

k+2
2 , and A =

blkdiag(↵1I, . . . ,↵N

I) and ˆV = blkdiag(V
i

), 8i.
Theorem 1: If the step sizes ↵

i

are chosen as:

A > 0 : M = V̂A�1 � I ⌫ 0, (13)

then the Algorithm 1 converges (i.e., lim

k!1 �k

= �⇤),
and the convergence rate for k > 1 is

q(�k)� q(�⇤) 6
2||�0 � �⇤||2

V̂ A�1

(k + 1)2

where  = kCH�1C>k is the Lipschitz constant [15, Th. 7,
Rem. 5], and ||y||

M

=

p

y>My.
Proof: The proof is a generalization of [18].

Corollary 1: If the Algorithm 1 converges, then the rate
of convergence for the primal variables is:

||zk � z⇤||22 6
4||�0 � �⇤||2

V̂ A�1

µ1(H)(k + 1)2

with µ1(H) the smallest eigenvalues of H .
Proof: The proof for the primals convergence rate

straightforwardly follows from [9, Th.3].
Corollary 2: If the Algorithm 1 converges, then the equal-

ity constraint violation is bounded by:

||(Cz(�k)� d)� (Cz(�⇤)� d)) ||22 6
4||�0 � �⇤||2

V̂ A�1

(k + 1)2
.

Proof: From the Descent Lemma [17, Ch. 3] we have:

||rq(�⇤)�rq(�k)||22 6 2(q(�k)� q(�⇤)� hrq(�⇤),�k � �⇤i).

Since �⇤ is a solution of the convex dual function q,
we have hrq(�⇤

),�k � �⇤i > 0. Thus, the statement is
straightforwardly derived by using Theorem (1).

IV. ASYNCHRONOUS DISTRIBUTED ALGORITHM

For the DMPC problem, iteration (8) leads itself to the
synchronous Algorithm 1: a global clock signal k has to be
shared by to all the nodes to guarantee the right exchange
of information. Generally, this assumption has limits on the
practical real-life large-scale systems.

An asynchronous version of the proposed DMPC algo-
rithm is studied here. The nodes have not to wait for the
neighbors states to compute the update [13], [17], i.e., the
nodes keep iterating the Algorithm 1 by using the most recent
neighbor’s variables even though they are not updated. This
allows handling the situations where the computational and
the data transfer times of the nodes are not the same.

Therefore, a local time variable k
i

is introduced as well
as the sets K

i

of times at which the node i updates its own
state, i.e., k

i

! k
i

+ 1 if k 2 K
i

[13]. We also denoted as
k
i

(k) the value assumed by local k
i

at time k, where k is
artificial time variable (not known by any node). Thus, the
asynchronous algorithm is characterized by the update rule:

�̃k

i

i

= (1� �k

i

i

)�k

i

i

+ �k

i

i

�k

i

�1
i

8i, k 2 K
i

(14a)

�k

i

+1
i

= �̃k

i

i

� ↵
i

V �1
i

g
i

(�̃k) 8i, k 2 K
i

. (14b)



The vector ˜�k is heterogeneous in the sense that its
components considered are at different time stamp, i.e.,
˜�k

i

=

˜�k

i

(k)
i

, while �k

i

i

=

1�✓

k

i

�1

✓

k

i

with ✓ki

=

k

i

+2
2 .

In order to guarantee the convergence of the asynchronous
algorithm we make the following assumption [13], [17]:

Assumption 1: There exists a positive integer K such that
for every i and k > 0, at least one of the set {k, . . . , k +

K � 1} belongs to K
i

.
The synchronous update can be seen as the asynchronous

one with k
i

= K, 8i, where K is the time needed by the
slowest node to perform the update.

We also force the descent property along each coordinate:

�k

i

+1
i

= �k

i

i

if r
i

q(�̃k)>(�k

i

i

� �̃k

i

i

) 6 0 8i, k 2 K
i

. (15)

Indeed, the vector �k is heterogeneous and q(�k+1
) could

be greater than q(�k

), leading the algorithm to instability.
Theorem 2: If the step sizes ↵

i

are chosen according
to (13), then the partially asynchronous algorithm (14) under
the condition (15) converges with the rate

q(�k)� q(�⇤) = O

✓
1
k2

◆
.

Proof: Since the gradient g(�) is Lipschitz continuous
from the Descent Lemma [17, Ch. 3] we have:

q(�k+1) 6 q(�̃k) +rq(�̃k)>(�k+1 � �̃k) +

2
||�k+1 � �̃k||22

We remind here that the approximated block diagonal
Hessian ˆV is symmetric positive definite by definition.

Using the convexity of dual function q(�) (i.e., q(�k

) >
q(˜�k

)+rq(˜�k

)

>
(�k�˜�k

)), and the update (14b) we obtain:

q(�k+1)� q(�k) 6�rq(�̃k)>(�k � �̃k)� ||�k+1 � �̃k||2
V̂ A�1�

2
,

(16)

where rq(˜�k

)

>
= �(�k+1 � ˜�k

)

>
ˆVA�1 by definition.

By Assumptions 1 and the conditions (13) and (15) we
ensure q(�k+1

) � q(�k

) 6 0 8k. We can rewrite (16)
component-wise as

q(�k+1)�q(�k)6
X

i:k2K

i

r
i

q(�̃k)>(�̃k

i

i

��
k

i

i

)� ||�k

i

+1
i

� �̃
k

i

i

||2
V

i

↵

�1
i

�

2

(17)

By Assumption 1 we have ✓k > ✓ki , 8i, k. Therefore, multi-
plying (17) left-side by (✓k�1) and right-side by (✓ki�1) for
each component, and adding to �k+1 , q(�k+1

)�q(�⇤
) > 0,

we get:

✓k�k+1� (✓k� 1)�k6
X

i:k2K

i

r
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↵
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. (18)

Note that by (12),

✓k+1�̃k+1 � (✓k+1 � 1)�k+1 = ✓k�k+1 � (✓k � 1)�k

and 0 < (✓k)2 � ✓k < (✓k�1
)

2. The same could be written
for the �k

i and ✓ki from (14). Therefore, multiplying (18)
right side by ✓k and left-side by ✓ki each component:

(✓k)2�k+1� (✓k�1)2�k6
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||2
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↵
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2
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i ||2
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�

, 8k > 1,

where wk

i

+1
i

= ✓ki�
i

k

i

+1 � (✓ki � 1)�k

i

i

� �⇤.

Using (13), after some manipulations, we have:

(✓k)2�k+1� (✓k�1)2�k6
X

i:k2K

i

�
1

2
||wk

i

+1
i

||2
V

i

↵

�1
i

+
1

2
||wk

i

i

||2
V

i

↵

�1
i

.

(19)

Since (19) holds for all k > 1 and the matrix V
i

⌫ 0 we can
sum (19) from 1!k�1 obtaining the theorem statement.

V. SIMULATION RESULTS

The synchronous DMPC solution has been compared with
some of the most recent algorithms available in the literature,
i.e., the distributed ADMM (D-ADMM) [10], the distributed
Accelerated Gradient (D-AG) [9] with the best step size (L2-
norm) and the generalized distributed Accelerated Gradient
(D-GAG) [12]. For the latter work, the Hessian matrix is
computed offline in a centralized way by solving an SDP
problem. However, it suffers from scalability issues due to
its high memory usage.

Simulations are performed in MATLAB using CVX tool-
box [19]. We set the control horizon T =6 and considered
two scenarios: 1) small-scale network consisting of N = 3

with n
i

= 5 and m
i

= 1 as [12]; 2) large-scale network
of N = 100 and E = 267 with n

i

= 2 and m
i

= 1; both
are generated according to the Watts-Strogatz model [20].
The matrices Q

i

, R
i

and S
i

have been randomly chosen as
rand(0.1, 100), while states and inputs have been bounded
by rand(�0.5, 0.5) and rand(�0.15, 0.15), respectively.

The small-case analysis is reported in Fig. 1, where the
convergence of f(x) and the relative error are depicted.
Similar analysis has been done for the large-scale scenario
(Fig. 2), however,in this case, it has not been possible
simulate the D-GAG algorithm due to the high memory
requirements. The Algorithm 1 shows better performance for
both small and large scale scenarios. The iterations needed
to achieve an error ✏ = 0.005 are listed in Tab.I.

Finally, the asynchronous performance has been exploited
by a comparison with the synchronous one. We supposed
that the slowest node takes K = 4 steps to run Algorithm 1.
The results are shown in Fig. 3.

A. Example: DCOPF for power grids with ESS

Recently, the Optimal Power Flow (OPF) has emerged
as a tool to optimize the power generation dispatch while
satisfying the underlying network constraints [21]. The clas-
sical Alternate Current OPF (ACOPF) is a static nonlinear

Alg. N ✏
# iters

Avg. Max

Alg.1
10 0.005 93.9 174
50 0.005 179.4 234

100 0.005 180.8 271

D-ADMM [10]
10 0.005 137.3 236
50 0.005 306.3 479

100 0.005 442.1 552
D-GAG [12] 10 0.005 119.3 222

D-AG L2 [9]
10 0.005 205.8 326
50 0.005 420.5 519

100 0.005 458.1 605

TABLE I
ITERATIONS NEEDED TO ACHIEVE THE ✏-ACCURACY.
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nonconvex problem since it involves the minimization of to-
tal variable generation costs subject to nonlinear Kirchhoff’s
laws. However, it is usually approximated by a more tractable
Direct Current OPF (DCOPF) that does not capture the
reactive power and linearizes the power flow equation. The
addition of power storages has introduced the opportunity
to optimize, across time, the power dispatch in the electric
grids [22].

The DC power injection equations are:

p
i

(t) = �
NX

j=1

1
x
ij

✓
ij

(t),

where ✓
ij

is the phase difference between i and j and
x
ij

is reactance of line (i, j). The DC power equations can
be written in matrix form as p

t

+ DYD>✓
t

= 0, where
Y is the diagonal matrix of lines admittance 1/x

ij

, and
D 2 RN⇥E is the incidence matrix of the graph model
G [23]. Therefore, the matrix L

Y

= DYD> 2 RN⇥N is the
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Fig. 3. Relative error of sync and async algorithms for large-scale scenario.

weighted Laplacian matrix of G and, therefore, it defines the
coupling in (1).

The net power export p
i

(t) from node i at time t consists
of the power from the node’s generator pg

i

(t) and battery
r
i

(t) minus the power load pd
i

(t), i.e., p
i

(t)= pg
i

(t)�pd
i

(t)+
r
i

(t). The r
i

(t) represents the power exchanged by the node
i with its ESS at time t, it can be negative (ESS is charging)
or positive (ESS is discharging). The State of Charge (SoC)
of the storage is denoted by s

i

(t) and it evolves according
to: s

i

(t+ 1) = s
i

(t)��t r
i

(t) [22], where the time axis is
discretized uniformly with �t = 1h.

Combining the above expressions leads to the following
DCOPF problem with storage dynamics:

min
s,g,✓

f
T

(s(T )) +
T�1X

t=0

f(s(t), pg(t), ✓(t))

s. t. s(t+ 1) = s(t) + pg(t) + L
Y

✓(t)� pd(t), t=0, . . . , T�1
0 6 s(t) 6 s, t=1, . . . , T

0 6 pg(t) 6 pg, ✓ 6 ✓(t) 6 ✓, t=0, . . . , T�1
s(0) = ŝ.

The power grid considered is the IEEE-118 [24] and the
results of the DCOPF based on DMPC are presented in
Fig. 4. The position of storages, generators and loads in the
network has been randomly chosen as well as the bounds
s
i

= rand(0, 0.2)MWh and �✓
i

= ✓
i

= 0.3 rad. We used
i = 1 as reference bus with ✓1 = ✓1 = 0 rad. We assumed a
control horizon T = 6h and an exact load prediction.

The Fig. 4(a) suggests that the implemented DCOPF uses
the ESS judiciously during periods of high load demand in
order to mitigate the generation and avoid more expensive
peaks. Fig. 4(b) shows the relative error ek for each DMPC
iteration. To make the convergence faster, the DMPC itera-
tions have been warmed started.

B. Example: Thermal Building Control
The heating, ventilation, and air conditioning (HVAC)

system for buildings is an example of a decentralized control
problem. The air is cooled by chilled water coils in the
central Air Handling Units (AHU) and reheated by hot
water coils in the Variable Air Volume (VAV) boxes in
each thermal zone [5]. Therefore network communication
topology that comes out for this problem has a star shape. A
leaf node corresponds to a VAV box and the central hub to
the AHU. The dynamic of the thermal zone i 2 {1, . . . , N}
are modeled by the following model [5]:

C
i

Ṫ
i

= u
c

+ u
i

+
T oa � T

i

R
i

+ pd
i

,

where T
i

is the temperature of zone i, T oa is the outside
temperature , u

i

is the local reheating power input from VAV
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Fig. 5. Analysis of building temperature control based MCP W/ and W/O
distributed control for N = 10 thermal zones.

box, u
c

is the cooling power input provided by the AHU
system, pd

i

is the external disturbance thermal load generated
by occupants, direct sunlight and electrical devices, while R

i

and C
i

are thermal resistive and capacitive parameters of i-
th zone. The control objective is to regulate temperature in
each thermal zone while minimizing energy consumption.

We used the same parameters as in [5]. The outside air
temperature profile T oa

(t) is depicted in Fig. 5(a), while,
the Fig. 5(b) shows the difference between the controlled
temperature in the closed loop using MPC and DMPC with
the stopping condition: ||gk|| < 0.005.

VI. CONCLUSION

The purpose of this paper is to develop a distributed
algorithm for solving the DMPC problems for large-scale
networks in a scalable way. To this aim we proposed
an asynchronous and accelerated Newton’s method. The
convergence of the algorithms has been studied and the
effectiveness of the solution has been illustrated through

numerical experiments. Finally, two real-case scenarios of
the application of the proposed algorithm have been shown.
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