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Abstract—Accurate models for predicting generation, 
demand, prices, and storage under uncertainties are essential for 
managing safe, sustainable and reliable electric grids. In this 
investigation, the use of data-mining methods for building models 
of electrical consumption and renewable generation aimed at 
integrating renewable generation for smart grid control is 
studied. The results presented are part of the I3RES project that 
aims at building future energy solutions for smart electric grids 
considering the typical uncertainties of the renewable generation. 
Our results indicate that the data-mining techniques are able to 
provide forecasts with reasonable accuracy in the presence of 
uncertainties. Furthermore, such forecasts are useful in building 
controllers that can perform control actions such as demand side 
management in smart grids. 
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I.  INTRODUCTION  

Spiraling fuel prices, increasing energy carbon foot-print, 
and energy consumption have significantly raised 
environmental and economic concerns. The judicious use of 
energy and integration of Renewable Energy Sources (RES) 
are seen as promising solutions in this scenario. However, 
intermittencies in renewable generation and issues with their 
integration prevent its integration into the grid. Consequently, 
acute utilization of the RES in grid operations, along with 
reducing carbon footprint has become a challenge itself.  

 In order to overcome the aforementioned difficulties, the 
EU FP7 I3RES project integrates RES in the electrical 
distribution grid by incorporating intelligence at three different 
levels: 1) in the integration of Renewable Energy Sources 
(RES), with the aim of minimizing the impact of such sources` 
intermittency, smart mechanisms for control and management 
are developed; 2) in the interoperation of all actors involved 
through a integration system and finally: 3) in the overall 
operation of the Smart Grid by attaining in advance predictions 
of parameters that allow the distribution system operator 

(DSO) to manage and operate the network more efficiently. 
The main approach followed to achieve these objectives has 
involved handling the raw-data obtained from the grid so as to 
transform it into knowledge about renewable generation and 
loads. 

One relevant actor of the Smart Grid (SG) scenario is the 
Aggregator; its main role focuses on purchasing and selling 
electricity on behalf of a group of consumers and electricity 
generators. The Aggregator, along with DSO and customers, 
are involved in the Demand Side Management (DSM) process, 
which has been defined in I3RES with the focus on 
encouraging the insertion of renewable sources, avoiding load 
peaks, minimizing failure risks in the grid operation, and 
contributing to a more active participation of the final user.  

In the I3RES framework, two scenarios model the DSM 
process: day-ahead and intraday. In the day-ahead scenario, 
DSOs and Aggregators anticipate grid conditions based on 
consumption and generation prediction realized by the 
algorithms implemented that are totally suited for the scenario 
at hand. Thus, the prediction algorithms allow both agents, 
DSO and Aggregators, to know in advance the estimated 
consumption or generation values; possible problems can be 
avoided as the DSM can apply diverse actions to influence the 
user consumption behavior. The types of actions that try to 
encourage the modification of users’ consumption are mainly 
indirect. Conversely, in the intraday scenario, with little time 
scope in advance, if the DSO detects that the grid’s proper 
operation will be destabilized (based on the predictions done 
by the algorithms) due to peak consumption or drops in the 
RES generation, the DSM strategy can only apply direct 
signals aiming at limiting users’ consumption. 

Additionally, as it has been introduced in the overall 
objectives of the I3RES project, particular emphasis will be put 
in facilitating the participation of the Aggregator in the DSM 
process. This task will be carried out by developing smart 
functionalities to analyze and predict customer consumption 
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and generation. Hence, prediction techniques are essential to 
react in advance to different grid situations. Moreover, in the 
case of RES generation, prediction tools allow the reduction of 
uncertainty of this type of sources. 

Therefore, the main technical objection of electrical 
companies to introduce more RES generation is its uncertainty 
and, thus, the possible grid instability that it might produce. 
Having a better and advanced knowledge of RES generation, 
thanks to prediction tools, will debunk this argument, helping 
RES integration. 

For such purposes, in recent years, data mining has become 
one of the most valuable tools for extracting knowledge and 
establishing patterns from data in order to produce useful 
information for decision-making processes. Utilizing such 
techniques, the available information on consumption and 
generation will be analyzed and patterns inferred so as to 
model a tool capable of predicting future values.  

II. DATA ANALYTICS IN THE SMART GRID 

The deployment of the Smart Grids in Europe has opened 
new opportunities to the development of new applications and 
solutions for a more efficient management and operation of 
electric grids. The analysis of the data coming from the AMI 
(Advanced Metering Infrastructure), added to the possibility of 
having more granular information (meter readings every 15 
minutes, for example, instead of one single measure per day),  
can provide companies capabilities for forecasting demand, 
shaping customer usage patterns, preventing outages, 
optimizing unit commitment, among others [1]. 

However, up to now not all Utilities are prepared to analyze 
and manage this large volume of data that come from the AMI. 
Assuming smart meter measurements every 15 minutes, at least 
96 million new data per day for every million meters are 
generated. Thus, this challenge aims at extracting knowledge 
from the data provided by the AMI and converting it into 
useful information for the agents involved in the DSM process. 
The graph above of Figure 1 represents the load curves of one 
smart meter with data measured from Monday to Thursday 
during 6 months. As it can be easily adverted, at a first glance, 
it is not possible to extract any information from it. 

 
Figure 1. Users load curves representation for 6 months. 

Data mining comprises the computational process of 
discovering patterns in large data sets involving methods that 
belong to artificial intelligence, machine learning, statistics, 
and database systems. The overall goal of the data mining 
process in the I3RESproyect is to inspect, clean, transform, and 

model data with the aim of discovering useful information, 
suggesting conclusions, and supporting decision-making. 

When the process allows for the understanding of what 
happened in the past, commonly linked to diagnosis, it is called 
Descriptive Analytics. In other scenarios, these patterns are 
inferred so as to be utilized to make predictions, assuming that 
the future, at least the near future, will not be much different 
from the past. Thus, a proper analysis of historical 
consumption information can allow, for example, inferring the 
behavior of a customer in the following hours. This is called 
Predictive Analytics. Finally, if the intention gravitates on 
performing decision making processes, diagnoses made based 
on such predictions offer special advantages in such a way that, 
for example, the consumption in a specific period of time can 
be reduced to avoid a grid overload. In this case Optimization 
techniques or Prescriptive Analytics are utilized for problem 
solving. 

However, the data analytic algorithms utilized in the I3RES 
project, as most of the commonly utilized ones, are non-
deterministic; involving that, with the same input, not always 
the same output is obtained. These methods depend on the 
initialization, training set, cross validation scheme and some 
stochastic parameters which control the behavior of the 
algorithm during the iterative process, among other parameters 
that need to be ad-hoc configured and adapted for the handled 
scenario. Henceforth, a different methodology from the 
traditional used for software development should be followed: 
CRoss-Industry Standard Process for Data Mining (CRISP-DM 
[2]) is a data mining process model that describes approaches 
commonly used by data mining experts. 

III. ENERGY CONSUMPTION FORECAST 

The problem tackled in this section consists of forecasting 
the consumption for the next 24 hours taking into account 
historical data attained from Steinkjer (the demonstration pilot 
located in Norway) and provided by NTE comprising two 
years of information captured from smart meters with hourly 
measures. This prediction will be realized, as a mandatory 
requirement from the DSO, at a certain secondary substation 
(CT). The reason behind the DSO requires such aggregated 
consumption is that in the DSM process, the main objective 
aims at adjusting the consumption and generation overall curve 
loads, and no user level or small variations are relevant in such 
task.   

 Basically consumption prediction in I3RES is done with 
two main inputs: historic energy consumption and weather 
forecast. The forecasting tool works inferring a function from 
the provided historical data so as to use such acquired 
knowledge for mapping new examples. First, the historical data 
is shaped by power consumption values captured over a period 
of time. The main idea is based on learning from past cases 
captured in the historical data from Steinkjer in order to being 
capable of forecasting future cases. The predictions realized are 
totally suited for the scenario at hand as the tools are trained 
with data from such particular scenario. 

On the other hand, the weather information provided has 
the aim of helping the algorithm to infer the relation between 
the weather in a certain area and the energy consumption in 



such area. For this purpose, apart from the information related 
to identify the forecast (location and date time), some 
parameters that directly affect the consumption, such as 
temperature, wind speed, humidity, pressure and dew point 
have been included. 

A. Data Procesing 

The availability of a considerable amount of data becomes 
a critical aspect. In order to estimate more accurately the 
amount of data that could prejudge the outcome of the forecast, 
many aspects have to be taken into account. These parameters 
range from the data variation change over time seasonality, to 
the number of outliers detected, the absence of certain values, 
the need for data cleansing, among others. The influence of 
such parameters directly affects the expected accuracy of the 
algorithms prediction. 

The seasonality of the data cannot be analyzed in detail, as 
the days are less than two years and not all seasons can be 
examined with more than one-year information. However, this 
lack of historical depth has proven not to be so decisive. The 
reason behind this lays on the smooth variations of the 
consumption loads; when training the algorithm for a 
determinate date, not only the data from the previous year is 
used, but also the previous month’s information is helpful. 

Closely related to the aforementioned depth in the data, the 
process of data cleansing, totally adapted to the algorithm that 
will be used, has to be determined. This basic cleansing should 
take into account the number of measures that are corrupted 
along all the collected data. In other words, among all the 
available data stored from the meters, some of them would 
have erroneous values, or even absence of them due to failures. 
Those values directly affect the quality of the information that 
will be provided to the algorithm. 

Once the available data is processed, the next step in this 
analysis should comprise the detection of outliers within the 
stored data. Generally, an outlier is an observation point that is 
distant from other observations. 

Once the data cleansing of both set of information (the 
consumption and the weather forecast) was done, the following 
step was to merge both sets of disjoint dates. In another words, 
it was necessary to integrate multi-magnitude incomplete 
weather forecast data with the “clean consumption” data, as the 
days when both set of data were complete and available were 
different. 

B. Modeling 

For the consumption forecast task, so far, two forecasting 
techniques have been implemented: Support Vector Machines 
(SVM) and Random Forests (RF). All schemes use the same 
set of feature inputs. The first technique is known to be one of 
the most consolidated regression one, even though it requires 
high computational complexity. The second option proposed, 
RFs, are one of the most promising regression techniques based 
on information theory with one of the best balances between 
computational burden and accuracy. So far, this second option 
is attaining the best results in the tests implemented with the 
data acquired form Steinkjer. 

A random Forest regressor is composed by a set of decision 
trees that consist of internal nodes that represent the decisions 
corresponding to the hyperplanes or split points, and leaf nodes 
that represent regions or partitions of the data space. Those 
regions are labeled with the majority class and are 
characterized by the subset of data points that lie in that region. 
One of the advantages of decision trees is that they produce 
models that are relatively easy to interpret as the output of a 
decision tree is transparent, which makes it easy for users to 
understand. In particular, a tree can be easily read as set of 
decision rules, with each rule’s antecedent comprising the 
decisions on the internal nodes along a path to a leaf, and its 
consequent being the label of the leaf node. Therefore, decision 
tree models are used in this scenario to examine data and 
induce the tree and its rules that will be used to make 
predictions. The prediction is used in this application to predict 
continue variables, where absolute values are required. 
However, decision tree techniques may suffer of scalability and 
efficiency problems, such as substantial decrease in 
performance and poor use of available system resources [3], if 
the scenario highly increases. However, in this case, as the 
consumption prediction is realized not for individual 
consumers, but for aggregated consumption values at 
substation level, it is highly improbable that these issues will 
affect the performance of the algorithm. Additionally, for 
tackling such problem, the basic implementation of random 
forest has not been selected; alternatively, the algorithm 
utilized is based on a random forest (RF) basis. 

On the other hand, SVM are supervised learning 
classification methods based on maximum margin linear 
discriminants; the goal is to find the optimal hyperplane that 
maximizes the gap or margin between the classes. Further, the 
optimal nonlinear decision boundary between classes which 
corresponds to a hyperplane in some high-dimensional 
nonlinear space can be found.  

The main task of such techniques is the analysis of the data 
and extracting patterns, even for classification or regression 
analysis. Given a set of training examples, each marked as 
belonging to one of two categories, an SVM training algorithm 
builds a model that assigns new examples into one category or 
the other, making it a non-probabilistic binary linear classifier. 
An SVM model is a representation of the examples as points in 
space, mapped so that the examples of the separate categories 
are divided by a clear gap that is as wide as possible. New 
examples are then mapped into that same space and predicted 
to belong to a category based on which side of the gap they fall 
on. In these cases the SVM is utilized for regression, not just 
for making a classification of the samples.  

Still there is no technique that has been proven to 
outperform all classification or prediction problems [4, 5]. The 
selection of the classification model is critical as well as 
difficult, even though in this case there is a lot of prior 
knowledge about the problem. Furthermore, some 
classification processes are quite unpredictable or 
nondeterministic, which requires an iterative process until the 
feedback on the performance of the system is satisfactory. All 
these aspects will be tackled when further describing the 
validation of the algorithm, where the total customization of 
the algorithm to the scenario handled is depicted. 



Finally, in parallel to the aforementioned methods, as it has 
been introduced in previous section, it is very important to 
make a good feature selection to assure that the input data to 
feed the algorithm provides the best results. For example, the 
information to predict the consumption, in a tertiary building at 
7 a.m. is not the same than at 11 a.m. Indeed, at 7 a.m. there is 
a big difference of the consumption related with the previous 
and following hours and probably the slope will depend on the 
output temperature. However, the consumption during the hill 
zone (midday) is very similar, which means that the 
consumption of the previous hour is enough for the prediction.  

The process followed with Steinkjer data was to discard 
those features with less influence in the results obtained in a set 
of test cases. The features that were analyzed are the following: 
different time windows for consumption variables, additional 
weather variables, and even the linear dependencies between 
the combinations of more than one single feature. 

C. Steinkjer Validation 

TABLE I.  DATA SET  

Historic depth Not consecutive days are available 

Starting date 03-12-2011 at 0:00 

Finishing date 05-10-2014 at 23:00 

Seasons Summer and Winter 

Frequency 24h forecast specifying the amount of energy 
hourly 

Quality Several data cleansing processes required. 

Discarding process for days with missing values 

Input data Consumed active energy at substation level: 
aggregation of individual accumulative 
measurements (data provided by NTE) and 
extracting differential measurements. 

Weather forecast information: temperature, wind 
speed, humidity, pressure and drew point. 

 

The forecast is executed for all days of the dataset and the 
analysis has been done comparing the prediction value of each 
24 hours with the real data registered for that day. In order to 
obtain statistical results, 10 Monte Carlo interactions are done 
for each test case. 

Error = (Forecasted Value (t)-Real Value (t))/(Real Value(t)) 

TABLE II.  ENERGY CONSUMPTION FORECAST RESULTS 

N 
Energy consumption forecast results 

Test Case Accumulative error 
(min/mean/max/std) 

Differential error 
(min/mean/max/std) 

1 Consumption 0.04/0.14/0.49/0.08 2.84/6.28/16.25/2.25 

2 
Consumption + 

Weather 
0.04/0.16/1.56/0.15 2.39/6.89/16.28/2.40 

3 
Working days 
(Consumption) 

0.05/0.49/5.11/0.57 2.23/7.13/26.34/3.17 

4 
Working days 

(Consumption + 
Weather 

0.05/0.49/5.14/0.57 2.11/7.12/26.46/3.16 

 

 

Figure 2. Consumption forecast for accumulative and differential values. 

IV. WIND GENERATION FORECAST 

Wind power is a renewable clean green energy which is 
following upward tendencies and hence, becoming one of the 
world’s fastest growing ones. Nowadays, it covers a significant 
percentage of electrical demand worldwide [5-11]. However, 
the energy source’s extreme uncertainty makes the wind power 
have shortcomings of intermittency and volatility. Thus, wind 
power fluctuations need to be balanced through: 1) the 
regulation of standby generators and, 2) by energy storage 
system. Wind power forecasting (WPF) is an instrument to 
help efficiently address this challenge, and significant efforts 
have been invested in developing more accurate wind power 
forecasts. 

Dependence on the discontinuity of the wind is one of the 
largest problems of wind power [11-21]. Wind generation 
forecast is also strongly affected by a correct topographical 
analysis of the site where the farm is. Additionally, plant 
information must be taken into account in a wind generation 
model; in particular, plant power curves are highly non‐linear 
and small errors in wind speed lead to big errors in power 
generation. 

A. Wind turbine model 

In I3RES project, wind power forecasting is done using 
multi-layer perceptron with back propagation training (BP). 
The BPNN consists of three layers: input, output and hidden. 
The number of neurons in hidden layer is arbitrarily selected to 
reduce the error and, within this forecasting algorithm, 50 
neurons have been utilized. As regards the activation function, 
the hyperbolic tangent function has been used. 

The reference to the output layer is the wind-speed data, 
while the measurements are used in the output layer. The 
difference between current measurements and forecasted 
values is used in the feedback path of the BPNN. The 
forecasting procedure is shown in Figure 3. 

 

 

 

Figure 3. Wind forecast scheme. 
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B. Rome validation 

Following the scheme proposed in previous section, Figure 
4 depicts real and predicted values of the forecast obtained 
through the BPNN.  The data obtained from the Rome 
meteorological centre have been used to train the network and 
the errors were recorded during a testing phase of 24 hours. 
During the training phase 5000 samples were used and the first 
24 forecast values were utilized to compute the Mean Absolute 
Error (MAE). Results indicate that the error with BPNN is low 
(MAE of 23%) compared to other neural network models 
available in literature [14-15]. 

 
Figure 4. Wind speed forecast. 

V. SOLAR GENERATION FORECAST 

A. Data Procesing 

Solar generation forecast stands for the use of historical 
measurements of weather, sun direction, scattering process, and 
photovoltaic (PV) cells to predict the future generation from 
the units. Solar forecasting methods are classified into three 
broad categories [22-27]: (i) now-casting, (ii) short-term 
forecasting and (iii) long-term forecasting. Now-casting stands 
for forecasting few hours ahead (3-6 hours in advance) and 
used in SG for control actions such as demand side 
management, peak-shaving, load balancing, optimal power 
flow and fault location, isolation and service restoration, 
among others. Short-term forecasting gives values of 
generation ranging from the next few days to one week and are 
used for generation planning, unit commitment, energy costs 
and in trading energy. Long-term forecasting refers to forecasts 
available for duration of months, or years and are used for 
long-term planning operations such as expansion planning, 
reactive power planning and planning future installations. 

Solar generation forecast works in two steps: weather 
forecasting and PV power computation or estimation, as shown 
in Figure 4. Numerical weather prediction is not a trivial task 
and it is mostly used for estimating direction normal radiation 
[W/m2], while the estimate of the solar radiation is used in PV 
panel simulators to estimate the energy generated [kWh]. 

 

 

 

Figure 4. Solar forecast scheme. 

B. Modeling 

Three approaches for PV generation forecasting within 
I3RES have been implemented. Forecasting of PV generation 
is performed using: 

1. Direct simulation using GHI forecast. In this method, the 
GHI data is obtained from the meteorological website such as 
the RENES [22] and then the PV model is used for simulation. 
Forecast obtained using this approach strongly depends on the 
GHI data. It can be concluded that when the provided 
information is precise, this method can generate good forecasts.  

2. Model fitting time-series data. A time-series model can 
be fitted using the obtained data from the website and the PV 
panel generation information. This model can represent the PV 
generation based on different conditions. However, it is 
suitable only for small forecasts. Time-series change depending 
on the radiation, snow-cover, dust deposition, etc. 

3. Computational intelligence based methods. Historical 
information on climate and GHI can be used to train an 
artificial neural network that can produce estimates based on 
current climate. In related literature, Radial Basis Function 
Networks have been commonly utilized for modelling solar 
generation. However, online estimation with RBF is not trivial. 
Moreover, the memory requirement is high due to higher 
number of hidden layer neurons. 

The back propagation neural network (BPNN) was tested 
for solar forecasting with the given inputs. MSE of 7-8% was 
observed in estimating GSR with BPNN. 

 

 

 

 

 

 

 

 

 

Figure 5. Real and Predicted data with BPNN 

C. PV Panel Simulation 

The second step in the PV generation forecast aims at 
simulating the energy generated from the PV panel. The single 
diode model shown in Figure 5 is the mostly prevalent model 
discussed in the literature and it has been used successfully also 
in this study. 

 

 

 

 

Figure 6. Single diode model of PV panel.. 



VI. CONCLUSIONS 

DSM process has been carried out in I3RES among DSOs, 
Aggregators and customers in order to increase the introduction 
of RES sources in the grid, avoiding load peaks -minimizing 
failure risk in the grid operation- and contributing to a more 
active participation of the final user in the grid management. 
Prediction techniques and user classification are essential to 
react in advance to different grid situations. Furthermore, in the 
case of RES generation, prediction tools allow the reduction of 
uncertainty of this type of sources. 

Regarding consumption forecast tasks comprised in the 
I3RES project, the tool has been designed to predict aggregated 
consumption at substation level in the grid of Demo Steinkjer 
(Norway). The feature selection process improved the 
prediction results, which means that a better understanding of 
the consumption patterns could be beneficial for the prediction. 
Thus, the regression methods implemented, totally tailored for 
the proposed scenario, in combination with the feature 
selection and data cleansing process, showed being able to 
obtain accurate energy consumptions 24 hour-ahead 
predictions. 

As far as RES forecast is concerned, the prediction is 
conditioned by the error of the weather forecast provided by a 
meteorological agent, and by the orography of the RES 
location. The only way to improve it is by the use of a machine 
learning approach (e.g., neural networks) which can adapt the 
coarser prediction to the local conditions where the RES is 
installed. This also facilitates the generalization of the 
prediction tool without adapting the algorithm to the specific 
conditions of the RES unit. 

The validation process demonstrated that the obtained 
results fulfill the purpose of the project. However, these tools 
should be completely installed and further validated in both 
real environments: the industrial one in Demo Steinkjer 
(Norway) and the lab one in Tecnalia Microgrid Laboratory. 
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