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Abstract— In this paper, the theory of robust min-max control
is extended to hierarchical and multi-player dynamic games
for linear quadratic discrete time systems. The proposed game
model consists of a leader and many followers, while the
performance of all players is affected by disturbance. The
followers play a Nash game with each other and each of them
also plays a zero-sum game with the disturbance. In the higher
level of the game, the leader plays a Stackelberg game with the
followers and at the same time, plays a zero-sum game with
disturbance. The Stackelberg-Nash-saddle point equilibrium of
the game is derived using dynamic programming approach and
some conditions for existence and uniqueness of the solution are
given. Finally an illustrative example is given in the simulation
results.

I. INTRODUCTION

Hierarchical decision making has been applied widely
in many engineering applications like smart grids, man-
ufacturing and wireless communication networks [1]–[6].
For example, the problem of demand side management in
smart grids is modeled as a hierarchical game between a
distribution company and users [1], [2]. In manufacturing
systems, the problem of inventory control is modeled as
a hierarchical decision making problem in which, a man-
ufacturer and retailers constitute a two level supply-chain,
where the manufacturer is the leader and retailers are the
followers [3], [4]. Also in bandwidth allocation problems in
wireless communication networks, the interaction between
the service provider and the users is modeled as a two layer
decision making problem [5], [6].

The problem of multi-player hierarchical decision making
becomes more complicated when players decide repeatedly,
in a dynamic environment. Dynamic games have been stud-
ied thoughtfully in the literature of control theory [7]. The
Nash and Stackelberg equilibrium points are the well-known
solutions of a dynamic game, where the players decide
simultaneously or as a leader-follower, respectively [8], [9].
Recently, dynamic games have been applied to hierarchical
decision making in fields like pricing and spectrum sharing
in communication networks [10]. However, still there is lack
of a general formulation of dynamic games for hierarchical
decision making problem. Since the hierarchical decision
making is commonly used as an effective approach for
tackling decision making in large-scale environments, the
uncertainty is a highly influential input to the system, which
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affects the performance of the players. Therefore, it is
desirable to model the uncertainties and consider them in
the optimal decision making of players.

To tackle the uncertainties introduced by disturbances in
the environment, the min-max control problem can be looked
at as a game theoretic perspective of robust H-infinite control
strategy in a dynamic environment [11]. In this framework,
the problem is modeled as a zero-sum dynamic game, in
which, the uncertainty is considered as a virtual player who
wants to maximize the cost function while decision maker
wants to minimize it [11]. Some applications of dynamic
min-max control can be found in security problems [12],
[13]. Recently, the min-max control strategy has been also
applied for control over network’s losses under TCP-like
protocol, where the wireless network system is affected by
link failures and packets drop [14], [15]. In [16] the min-
max game is also applied for decision making in a two
player sequential game. However, to the best of the authors’
knowledge, the robust decision making has not been explored
in multi-player and dynamic hierarchical games, yet.

This paper addresses the general formulation of dynamic
discrete time hierarchical linear quadratic games, considering
the uncertainties as a bounded exogenous disturbance to
the system. In the proposed dynamic game, the leader acts
first and play a Stackelberg game with the followers. In the
second level the followers play an n-player non-cooperative
game and decide simultaneously, after the leader. All the
players, including the leader and the followers, also play
a zero sum game with the disturbance. Then, the sub-
game perfect equilibrium points of the game are derived by
using a dynamic programming approach. It is shown that
under certain conditions the proposed dynamic hierarchical
game admits a Stackelberg-Nash-saddle point equilibrium
which can be interpreted as the robust optimal strategy
of the players. It is shown that the robust optimal closed
loop strategies of the leader and the followers are in fact
the linear feedback strategies and the corresponding Riccati
equations are derived. Some conditions for the existence
and uniqueness of the equilibrium point of the dynamic
hierarchical game are also given.

This paper is organized as follows: The problem for-
mulation, the closed loop robust optimal strategies for the
players and the conditions for the existence and uniqueness
of the equilibrium points are given in this Section II. Section
III includes the simulation results and finally the paper is
concluded in Section IV.
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II. EQUILIBRIUM ANALYSIS OF THE HIERARCHICAL
DYNAMIC GAME

Consider a dynamic system that has one leader and n
followers, all together playing over a states space evolving
according to the following difference equation

xk+1 =Axk +Bn+1vk +
n∑

i=1

Biui
k +Dwk, (1)

where xk ∈ Rq is the value of states, vk ∈ Rm is the leader’s
decision, ui

k ∈ Rm, i = 1, 2, . . . , n is the i-th follower’s
decision and wk ∈ Rp is the disturbance, and k points to the
index of stage.

Assume that the players decide rationally and all the
players are aware of this fact and know all players’ pa-
rameters and the state dynamics. Moreover, in order to
implement a closed-form control strategy, it is assumed that
the state information is available to all players. The leader’s
decision is based on followers’ rationality and both leader
and followers are trying to set their control strategy in order
to minimize their cost function over a finite number of stages,
say N . Those cost functions are in quadratic form, as inspired
by the robust game theoretic approach [11]. They can be
written as

J i
k(xk, u

i
•, w•) =

N−1∑

m=k

(
x⊤
mQixm + ri∥ui

m∥2 − γ2∥wm∥2
)

+ x⊤
NQi

NxN , i = 1, 2, . . . , n (2)

Jn+1
k (xk, v•, w•) =

N−1∑

m=k

(
x⊤
mQn+1xm + rn+1∥vm∥2

−γ2∥wm∥2
)
+ x⊤

NQn+1
N xN , (3)

where Qi, Qn+1 are all positive semidefinite matrices (such
property is denoted by ! 0), the terminal weights are positive
definite matrices (Qi

N , Qn+1
N > 0), γ and ri, rn+1 > 0

are positive scalars, and the sequences of signals of in-
terest are denoted by the subscript •, i.e., in (2) ui

• =
{ui

k, . . . , u
i
N−1, u

i
N}. Equations (2), (3) describe the fol-

lowers’ and the leader’s cost functions, respectively, and
weight the decision sequences ui

• (v• for the leader) and
w•, together with the the state sequence x• obtained from
the initial state xk through the game dynamics (1). All
of the players including the leader and followers play a
zero-sum game against the disturbance w, by considering
it as a further virtual player who wants to maximize their
own cost functions while other players want to minimize
them. Here it is assumed for simplicity (but the analysis can
be straightforwardly extended) that cost functions have the
same weight γ for the disturbance effect. Note that, when
considering a single cost function, such weight assumes the
role of the disturbance attenuation parameter related to the
upper bound of the H-infinite norm of a suitable transfer
function [11].

Theorem 1: Consider the proposed hierarchical game in-
cluding one leader and n-followers with objective functions
defined in (2), (3) and the dynamic system (1) affected by

disturbance. If there exists a unique Stackelberg-Nash-Saddle
point equilibrium including the strategy of all the players’,
then the following positive definite conditions need to be
satisfied

γ2I −D⊤Zi
k+1D > 0, i = 1, 2, . . . , n+ 1 (4a)

(Bi)⊤Zi
k+1B

i + riI > 0, i = 1, 2, . . . , n (4b)
(B′

k)
⊤Zn+1

k+1B
′
k + rn+1I > 0, (4c)

where the recursive difference Riccati equations of Zi
k ∀k "

N are given by

Zi
k = Qi + (Hi

k)
⊤Zi

k+1H
i
k + riLi

k
⊤
Li
k − γ2(L−i

k )⊤L−i
k

i = 1, 2, . . . , n (5)
Zn+1
k = Qn+1 + (Hn+1

k )⊤Zn+1
k+1H

n+1
k + rn+1(Ln+1

k )⊤Ln+1
k

− γ2(L−(n+1)
k )⊤L−(n+1)

k , (6)

with the terminal conditions on Zi
k as

Zi
N = Qi

N > 0 i = 1, 2, . . . , n (7a)
Zn+1
N = Qn+1

N > 0, (7b)

and

Hi
k =A′

k +B′
kL

n+1
k +DL−i

k i = 1, 2, . . . , n (8)

Hn+1
k =A′

k +B′
kL

n+1
k +DL−(n+1)

k (9)
Li
k =F i

k(A+Bn+1Ln+1
k ) i = 1, 2, . . . , n

(10)
L−i
k =F−i

k (A+Bn+1Ln+1
k ) i = 1, 2, . . . , n

(11)

Mk =
n∑

i=1

BiF i
k (12)

A′
k =A+MkA (13)

B′
k =Bn+1 +MkB

n+1, (14)

with the Stackelberg-Nash-Saddle point being linear with
respect to the state and obtained through the gains L•

k as
below:
(
uk

i∗, wk
i∗, vk

∗, wk
n+1∗

)
=

(
Li
k, L

−i
k , Ln+1

k , L−(n+1)
k

)
xk,

(15)

where i = 1, 2, . . . , n refer to the followers, n + 1 points
to the leader, and the indices −1,−2, . . . ,−n indicate the
different disturbance worst case feedback strategy for dif-
ferent followers and the index i = −(n + 1) refers to the
disturbance worst case feedback strategy for the leader.

Proof: Based on the bottom-up principle we want
to solve the hierarchal game from down to top. In lower
level, the sub-game perfect equilibrium point of the game is
obtained by finding the Nash-saddle point equilibrium of the
game among the followers and also between each follower
and the disturbance. Consider the simultaneous decision
making of the n-followers according to cost functions given
in (2). First, we want to find the optimal reaction functions
of the followers to the strategy of the leader, by taking
into account the state and system dynamics information



(it is assumed they know it) and the worst case effect of
disturbance on their own cost function. That means each
follower could get different saddle point equilibria with
respect to the disturbance. Thus we will denote by wi

k the
disturbance variable into the i-th follower. Assume that the
system is in the k-th stage and all the cost-to-go functions in
the next stages have been already optimized. The goal is to
calculate the k-th stage saddle point equilibrium for all the
followers. Then we have the following value function to be
optimized:

V i
k (xk) = min

ui
k

max
wi

k

J i
k(xk, u

i
k, w

i
k), (16)

and, by using the dynamic programming approach, the cost
function will be:

J i
k(xk, u

i
k) =x⊤

k+1Z
i
k+1xk+1 + x⊤

k Q
ixk + ri∥ui

k∥2 − γ2∥wi
k∥2

=(Axk +Bn+1vk +
n∑

j=1

Bjuj
k +Dwi

k)
⊤Zi

k+1

· (Axk +Bn+1vk +
n∑

j=1

Bjuj
k +Dwi

k)

+ x⊤
k Q

ixk + ri∥ui
k∥2 − γ2∥wi

k∥2. (17)

In order to calculate optimal strategies of the followers
and the worst case disturbance (i.e.,

(
ui
k
∗
, wi

k
∗)), the first

derivatives of the cost-to-go function with respect to ui
k and

wi
k are set equal to zero as follows:

∂J i
k

∂ui
k

=0 → (Bi)⊤Zi
k+1

n∑

j=1

Bjuj
k + riui

k + (Bi)⊤Zi
k+1Dwi

k

= −(Bi)⊤Zi
k+1(Axk +Bn+1vk) (18a)

∂J i
k

∂wi
k

=0 → D⊤Zi
k+1

n∑

j=1

Bjuj
k + (D⊤Zi

k+1D − γ2I)wi
k

= −D⊤Zi
k+1(Axk +Bn+1vk). (18b)

If we denote by Bk ∈ Rmn×mn, Dk ∈ Rpn×pn and
Ak ∈ Rpn×pn the block matrices of the matrix αk whose
expression is reported in (19) such that

αk =

(
Bk diag(A⊤

k )
Ak Dk

)
, (20)

then conditions (18) can be rewritten as:

BkU∗
k + diag(A⊤

k )W∗
k = Ek(Axk +Bn+1vk) (21a)

AkU∗
k +DkW∗

k = Fk(Axk +Bn+1vk), (21b)

with Ek and Fk suitable matrices and U∗
k and W∗

k column
vectors obtained by stacking the Nash-saddle-point values
ui
k
∗ and wi

k
∗. As it is shown, there are 2n matrix equations

that should be solved simultaneously, in order to obtain the
Nash-saddle-point equilibrium strategy of all followers in k-
th stage of the game. In particular, the first equation involves
m unknown components of ui

k and the second equation p
components of wi

k. System (21) has (m+p)n linear equations
with (m+ p)n unknowns.

If the Nash-Saddle-point equilibrium exists and it is
unique, that has to be linear with respect to the right-hand
side of (21) and, in particular, the optimal strategies can be
expressed as follow:

ui
k
∗
= F i

k(Axk +Bn+1vk) i =1, 2, . . . , n (22a)

wi
k
∗
= F−i

k (Axk +Bn+1vk), i =1, 2, . . . , n, (22b)

where F i
k and F−i

k are matrices related to the inverse of αk.
The value wi

k
∗ corresponds to the worst case that could be

caused by disturbance on the i-th follower’s cost function. It
is clear from (22) that the optimal strategies of the followers
are dependent on the strategy of the leader. Once the leader
made its decision these strategies can be evaluated. In what
follows, we will show that leader’s strategy is also linear
with respect to the state, thus giving an expression

v∗k = Ln+1
k xk, (23)

that, used by followers in (22), give the expressions of Li
k

and L−i
k in (10) and (11).

Before looking at the leader’s optimal strategy, we have
to show what the expression of L−i

k is. Consider the condi-
tion (18b) by replacing all the players optimal strategies ui

k
∗

and v∗k:

(D⊤Zi
k+1D − γ2I)wi

k
∗
= −D⊤Zi

k+1(A+Bn+1Ln+1
k )xk

−D⊤Z⊤
k+1

n∑

j=1

BjF j
k (A+Bn+1Ln+1

k )xk. (24)

By using (13) and (14) we can write

wi
k
∗
=(γ2I −D⊤Zi

k+1D)−1D⊤Zi
k+1

(
A′

k +B′
kL

n+1
k

)
xk

=L−i
k xk. (25)

Let us focus now on calculating Stackelberg-saddle point
equilibrium of the game in higher level which is a Stackel-
berg game between leader and followers and also a zero sum
game between leader and disturbance. By considering that
the leader knows the reaction functions of followers and use
those functions in its optimal decision making, the followers’
reaction functions are put into the states equation and then,
the state space equation is changed to the following form:

xk+1 =Axk +Bn+1vk +
n∑

i=1

(BiF i
k(Axk +Bn+1vk))

+Dwk

=(A+MkA)xk + (Bn+1 +MkB
n+1)vk +Dwk

=A′
kxk +B′

kvk +Dwk. (26)

Note that the optimal value of disturbance which was cal-
culated in (22b) is not replaced in (26). The reason is that
we also want to calculate the worst case condition for the



αk =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(B1)⊤Z1
k+1B1 + r1I (B1)⊤Z1

k+1B2 · · · (B1)⊤Z1
k+1Bn (B1)⊤Z1

k+1D 0 · · · 0

(B2)⊤Z2
k+1B1 (B2)⊤Z2

k+1B2 + r2I · · · (B2)⊤Z2
k+1Bn 0 (B2)⊤Z2

k+1D · · · 0

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.
. . .

.

.

.
(Bn)⊤Zn

k+1B1 (Bn)⊤Zn
k+1B2 · · · (Bn)⊤Zn

k+1Bn + rnI 0 0 · · · (Bn)⊤Zn
k+1D

D⊤Z1
k+1B1 D⊤Z1

k+1B2 · · · D⊤Z1
k+1Bn D⊤Z1

k+1D − γ2I 0 · · · 0

D⊤Z2
k+1B1 D⊤Z2

k+1B2 · · · D⊤Z2
k+1Bn 0 D⊤Z2

k+1D − γ2I · · · 0

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.
. . .

.

.

.
D⊤Zn

k+1B1 D⊤Zn
k+1B2 · · · D⊤Zn

k+1Bn 0 0 · · · D⊤Zn
k+1D − γ2I

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(19)

leader. The leader’s cost-function at k-stage is:

Jn+1
k (xk, vk) =x⊤

k+1Z
n+1
k+1 xk+1 + x⊤

k Q
n+1xk+1

+ rn+1∥vk∥2 − γ2∥wk∥2

=(A′
kxk +B′

kvk +Dww)
⊤Zn+1

k+1

· (A′
kxk +B′

kvk +Dwk) + x⊤
k Q

n+1xk

+ rn+1∥vk∥2 − γ2∥wk∥2. (27)

Taking the derivatives with respect to the control strategy
and disturbance and putting them equal to zero we have

∂Jn+1
k

∂vk
= 0 → (B′

k)
⊤Zn+1

k+1B
′
kvk + rn+1vk

+ (B′
k)

⊤Zn+1
k+1Dwn+1

k = −(B′
k)

⊤Zn+1
k+1A

′
kxk (28a)

∂Jn+1
k

∂wn+1
k

= 0 → D⊤Zn+1
k+1B

′
kvk + (D⊤Zn+1

k+1D − γ2)wn+1
k

= −D⊤Zn+1
k+1A

′
kxk. (28b)

By following the same approach as above for the followers,
the optimal values (v∗k, wn+1

k

∗
) of the leader strategy will

be

v∗k = Ln+1
k xk (29a)

wn+1
k

∗
= L−(n+1)

k xk. (29b)

and, in particular, the gain L−(n+1)
k is given by

L−(n+1)
k =

(
γ2I −D⊤Zn+1

k+1D
)−1

D⊤Zn+1
k+1 (A

′
k +B′

kL
n+1
k ).
(30)

Once the optimal strategy of the leader, followers and distur-
bance is achieved, one can compute the Stackelberg-Nash-
saddle point equilibrium of the game given in (22); it comes
out that the cost functions must be convex-concave, with
respect to the players (follower or leader) and the disturbance
in every stage, respectively:

∂2J i
k

∂ui
k
2 = (Bi)⊤Zi

k+1B
i + riI > 0 (31a)

∂2J i
k

∂wi
k
2 = D⊤Zi

k+1D − γ2I < 0 (31b)

∂2Jn+1
k

∂vk2
= (B′

k)
⊤Zn+1

k+1B
′
k + rn+1I > 0 (31c)

∂2Jn+1
k

∂(wn+1
k )2

= D⊤Zn+1
k+1D − γ2I < 0. (31d)

Now, in order to complete the proof, it is needed to derive
Riccati equations. To this aim, the obtained control strategies
are replaced into the state equation and then into the cost-
to-go functions, as well. The Riccati equation of the leader
is as follows:

V n+1
k (xk) =x⊤

k (A
′
k +B′

kL
n+1
k +DL−(n+1)

k )⊤Zn+1
k+1

· (A′
k +B′

kL
n+1
k +DL−(n+1)

k )xk + x⊤
k Q

n+1xk

+ rn+1∥Ln+1
k xk∥2 − γ2∥L−(n+1)

k xk∥2

=x⊤
k ((H

n+1
k )⊤Zn+1

k+1H
n+1
k + rn+1(Ln+1

k )⊤Ln+1
k

+Qn+1 − γ2(L−(n+1)
k )⊤L−(n+1)

k )xk

=x⊤
k Z

n+1
k xk. (32)

According to the same manipulations, the followers’ Riccati
equations is obtained as follows:

V i
k (xk) =x⊤

k (A
′
k +B′

kL
n+1
k +DL−i

k )⊤Zi
k+1

· (A′
k +B′

kL
n+1
k +DL−i

k )xk + x⊤
k Q

ixk

+ rix⊤
k (L

i
k)

⊤Li
kxk − γ2x⊤

k (L
−i
k )⊤L−i

k xk

=x⊤
k (Q

i + (Hi
k)

⊤Zi
k+1H

i
k + ri(Li

k)
⊤Li

k

− γ2(L−i
k )⊤L−i

k )xk = x⊤
k Z

i
kxk. (33)

Theorem 2: If conditions (4) of Theorem 1 are satisfied
and, moreover, the following condition holds ∀k, i

ri >
∑

j ̸=i

∥(Bi)⊤Zi
k+1B

j

+ (Bi)⊤Zi
k+1D(γ2I −D⊤Zi

k+1D)−1D⊤Zi
k+1B

j∥
(34)

then there exists a unique Stackelberg-Nash-Saddle point
equilibrium including the strategy of all players.

Proof: Let us rewrite here the conditions related to the
optimal strategies of followers:

BkU∗
k + diag(A⊤

k )W∗
k = Ek(Axk +Bn+1vk) (35a)

AkU∗
k +DkW∗

k = Fk(Axk +Bn+1vk). (35b)

If condition (4a) is satisfied, then Dk is invertible and

W∗
k = D−1

k

(
−AkU∗

k + Fk(Axk +Bn+1vk)
)
, (36a)

(
Bk − diag(A⊤

k )D−1
k Ak

)
U∗
k

=
(
Ek − diag(A⊤

k )D−1
k Fk

)
(Axk +Bn+1vk). (36b)



It is not difficult to show that the matrix Mk = Bk −
diagA⊤

k D
−1
k Ak can be partitioned into the following blocks:

(Mk)ij =(Bi)⊤Zi
k+1D(γ2 −D⊤Zi

k+1D)−1D⊤Zi
k+1B

j

+ (Bi)⊤Zi
k+1B

j , i, j = 1, . . . , n, i ̸= j
(37a)

(Mk)ii =(Bi)⊤Zi
k+1D(γ2 −D⊤Zi

k+1D)−1D⊤Zi
k+1B

i

+ (Bi)⊤Zi
k+1B

i + riI, i = 1, . . . , n. (37b)

The blocks (Mk)ii on the diagonal are symmetric and,
due to conditions (4a) and (4b), they are also positive
definite matrices since Zi

k > 0 as shown in Theorem 1
and Lemma ??. Their singular values σ coincide with their
eigenvalues λ and

∥(Mk)
−1
ii ∥−1 =σmin((Mk)ii) = λmin((Mk)ii)

=λmin((Mk)ii − riI) + ri > 0. (38)

Let us now consider the matrix (Mk)ii − riI rewritten as
(Bi)⊤XiBi with Xi ∈ Rq×q and M i ∈ Rq×m. In the
case m > q (more inputs variables than state dimension
for the i-th follower), Bi is not full column rank and, thus,
λmin((Mk)ii − riI) = 0. Instead, when q ! m, we can
apply [17, Theorem 3.2] for getting

λmin

(
(Bi)⊤XiBi

)
!λmin(X

i) · λmin((B
i)⊤Bi). (39)

Thus

∥(Mk)
−1
ii ∥−1 !ri + λmin(X

i) · λmin((B
i)⊤Bi) (40)

If conditions

ri >
∑

j ̸=i

∥(Bi)⊤Zi
k+1B

j

+ (Bi)⊤Zi
k+1D(γ2I −D⊤Zi

k+1D)−1D⊤Zi
k+1B

j∥
(41)

hold, then by (40) it comes out that matrix Mk is block
strictly diagonally dominant and, thus, nonsingular [18]. Its
invertibility implies the existence and uniqueness of the Nash
equilibrium point.

U∗
k =M−1

k

(
Ek − diag(A⊤

k )D−1
k Fk

)
(Axk +Bn+1vk)

(42a)
W∗

k =D−1
k

(
Fk −AkM−1

k

(
Ek − diag(A⊤

k )D−1
k Fk

))

· (Axk +Bn+1vk) (42b)

III. SIMULATION

In this section, an illustrative example of proposed hier-
archical dynamic system is presented. The number of state
variables and the followers are considered equal to two. The

state space model and the output of the system are

x0 =
(
5 3

)⊤

xk+1 =

(
2 −3
8 3

)
xk +

(
1.9
0.55

)
vk +

(
0.7
0.3

)
u1
k

+

(
0.2
0.41

)
u2
k +

(
−0.8
1

)
wk

yk =
(
1 1

)
xk

The leader’s control coefficient is set bigger than the fol-
lowers, since the leader’s decision is more effective decision
in some practical cases. The disturbance is considered as a
uniform noise, bounded in [−0.5, 0.5]. The value of other
parameters are given in Table I.

TABLE I
SYSTEM PARAMETERS

Parameter Leader First Follower Second Follower
ri 0.5 7 1
Qi

N 4 · I2 3.25 · I2 2.5 · I2
Qi 5 · I2 2 · I2 5 · I2

Before simulating the discrete time dynamical system,
the values of control feedback signals are calculated as
proposed in Section II. After that, the control strategies are
substituted in the state difference equation and the behavior
of the system is evaluated. Figure 1 shows the behavior of
the output signal for optimal values of the control strategy
and for random disturbances. As it is shown, although the
system is stable, as the attenuation parameter is starting
to decrease the system goes toward instability. This is an
expected result since as it was shown in the paper this is
a necessary condition for existence and uniqueness of the
saddle point equilibrium of the game. The optimal decisions
in each iteration of all players is given in Figure 2.

Note that the disturbance is considered having its actual
value. Therefore, after the stabilization, the control strategies
are still affected by a zero mean bounded disturbance.
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Fig. 1. The output of the system among different attenuation parameter
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Fig. 2. Players’ decisions
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Fig. 3. Players’ cost function with the actual disturbances

Figure 3 shows both increasing and decreasing behavior of
the cost functions while it is expected to see the accumulating
property of the cost. The reason is intuitive and comes from
the last part of cost functions in (2)-(3), namely the square
of the disturbance. As the states converge to their final value,
the state and the decisions’ signals will be in a narrow band
around zero. But the last term has still an additive negative
value that makes the cost function decreasing after some
iterations.

IV. CONCLUSION

In this paper, the H-infinite min-max problem has been
extended to a hierarchical multi player robust game, in which
the discrete time state space model and the cost function of
the players is affected by disturbance.

In the lower level of the hierarchical game, the Nash-
saddle equilibrium point has been derived by intersecting the
followers’ best responses together with disturbance’s worst
case strategies for each follower.

In the higher level, the leader plays a Stackelberg game
with followers and also participates in a min-max game
with the disturbance similar to the followers. Once achieved
the leader’s optimal decision, the Stackelberg-Nash-saddle
equilibrium point was calculated. The optimal feedback
strategies of the players and the conditions for the existence
and uniqueness of the solution have been given.

Current research work is aimed to investigate properties
of the Riccati equation solutions and some stability analysis.
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