
A Colored Gauss-Seidel Approach
for the Distributed Network Flow Problem

Alessio Maffei, Luigi Iannelli, Luigi Glielmo

Abstract— A distributed solution for the minimum cost
network flow problem is here proposed. The method uses
a block version of the Gauss-Seidel algorithm in order to
iteratively solve the dual problem whose structure is such that
the Hessian matrix coincides with the Laplacian matrix of
the corresponding graph. Thus, the updating rule turns out
to be fully distributed. In order to increase the parallelism
degree, a graph coloring scheme allows the clustering of nodes
that reduces the sequentiality of the Gauss-Seidel technique.
Numerical experiments show the effectiveness of the approach
compared with methods recently presented in the literature.

I. INTRODUCTION

The minimum cost network flow problem consists of
finding the most economic way to transport objects through
a given distribution network, from a set of suppliers to
a set of consumers [1]–[3]. Problems of minimum cost
flow can be easily found in many practical engineering and
management systems, e.g., minimizing the road traveled in
moving goods through a network [2], [4]; optimizing the cost
associated with using particular routes in data communica-
tion networks [2], [5], [6]; addressing communication and
computation challenges in cloud computing [7]; optimizing
resource allocation in wireless data network [8]; distributing
power flows in a smart grid power network minimizing the
overall cost [9].

One of the most discussed topic in this research field
consists of solving the problem in a distributed way, thus
allowing to manage large-scale networks in a scalable way.
A distributed iterative method for minimizing the network
flow cost is proposed in [1], [2], where the authors use dual
subgradient descent methods to achieve the optimal network
flow. Subgradient methods are also proposed in [10], [11]
where averaging algorithms for locally sharing information
over the network are used.

Performances improvements with respect to these methods
can be obtained by using second order Newton methods [2],
[12], that lead to a distributed implementation as long as
particularly structured matrices approximating the inverse of
the Hessian are used. Another possibility is to implement a
superlinear convergent Newton-like method via the conjugate
gradient by graph operations, without explicit computation
or storage of any Hessian matrix [13]. Distributed solutions
can be also achieved by using the ✏-relaxation method [1],
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as well. For instance [14] proposes a parallel asynchronous
version of the ✏-relaxation method.

Recently, the research has been directed toward the use
of matrix splitting techniques for Newton direction approx-
imations, like the accelerated dual descent approach (ADD)
that allows a distributed optimization with fast converge
rate [15], [16]. Authors use the Neumann series expansion of
the pseudo-inverse of the Hessian for computing the Newton
direction. The algorithm is called ADD-N since each node
uses information from N hops away.

In this paper we propose an alternative distributed algo-
rithm for solving the classic minimum cost network flow
problem. Starting from the dual problem we compute the
Newton direction by using a parallel Gauss-Seidel method
typically used for solving linear systems [2]. The algorithm
that comes out is cyclic, partially ordered and asynchronous,
i.e., computation results are available to other nodes as
soon as they are produced, matching the behavior of real-
life large-scale systems [17], [18]. The proposed approach
is inspired by [19] where the authors carried out a dis-
tributed solution for maximizing the network source utility
by using the Hessian diagonal in a scaled Newton method.
Differently from that method that was synchronous (i.e.,
the updated information was available to other nodes only
after the complete iteration), in this paper an asynchronous
implementation is looked at, in order to exploit advantages
inherent to such kind of approach [17]. Indeed, much of
the data dependencies in the Gauss-Seidel algorithms could
be eliminated by performing nodes ordering to maximize the
degree of parallelism. To this aim we used the graph coloring
technique as a preconditioning phase [20] that allows to
cluster nodes in subsets (colors) so that all nodes in the
same subset are not connected among them. The method
carried out is called block (or colored) Gauss-Seidel: at each
iteration only a single cluster of nodes performs in parallel
the updating rule. Such an approach has been successfully
used in the literature dealing with linear equations [20] and
partial differential equations [21], [22]. Here we will show
how it can be effectively used also for solving minimum cost
network flow problems for large-scale networks, in particular
when the available hardware parallelism is not comparable
with the dimension of the network.

II. PRELIMINARIES OF GRAPH THEORY

A weighted directed graph is denoted by G = (V, E , w),
where V is a finite non-empty set of n = |V| elements called
vertices (or nodes), E is a set of ordered pairs of distinct
vertices called edges (or links), with E = |E|, and w 2 RE
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is the vector of edges weights. Each edge is denoted by e =

(i, j) 2 E where we refer to i 2 V and j 2 V as tail and
head of the edge e, respectively. Each node i 2 V has a
set of neighbours denoted as N

i

. In the sequel, without loss
of generality, all vertices and edges will be identified with
the integers {1, 2, . . . , n} and {1, 2, . . . , E}, respectively. We
can now introduce the vertex-edge incidence matrix A 2
Rn⇥E of a directed graph G, which is the matrix whose
entries are

A

ie

=

8
><

>:

1, if node i is the tail of the e-th edge
�1, if node i is the head of the e-th edge
0, otherwise.

(1)

Let L 2 Rn⇥n be the weighted Laplacian matrix [23] of the
graph G, defined as L = AWA>, where W 2 Rn⇥n is the
diagonal matrix of the edge weights w, and the superscript >

denotes the transpose matrix. The Laplacian matrix L has the
property of being symmetric positive semi-definite. Moreover
it holds that 0 = µ1(L) 6 µ2(L) 6 · · · 6 µ

n

(L) where
µ

i

(X) is the i-th eigenvalue of matrix X.

III. NETWORK FLOW PROBLEM

Let us consider a network of nodes i 2 V connected
among them through links e 2 E with a given direction.
On each e it is possible to choose a quantity x

e

of flow so
that x

e

is positive if the flow goes along the same direction
of e and it is negative if it goes in the opposite direction. In
this way we are modeling the network as a directed graph
without specifying the edges weights (see Fig. 1). The graph
is assumed to be strictly connected.

We associate to each node i a real number b
i

representing
its supply/demand. If b

i

> 0, node i is a supply node; if b
i

<

0, node i is a demand node with a demand of �b
i

; and if b
i

=

0, node i is called transshipment node [1]–[3]. Therefore,
the quantity b

i

can be regarded as an exogenous/external
flow. We want that all flows must satisfy the conservation
constraint:

P
e=(i,j) xe

�
P

e=(j,i) xe

= b

i

8i. It is required
that the vector b 2 Rn satisfies the constraint

P
n

i

b

i

= 0 in
order to make the problem feasible.

The aim of the minimum cost network flow problem is to
determine the flow x

e

of each link in order to minimize a
given flow cost function. We assume the flow cost on each
link is a scalar function �

e

(x

e

) denoting the cost of x
e

units
of flow traversing the link e. Thus, the network flow problem

i
b

i

j

b

j

e = (i, j)

x

e

,�

e

Fig. 1. Graph model for the network flow.

can be written as

min

x

f(x) =

EX

e=1

�

e

(x

e

)

s. t. Ax = b

(2)

where x 2 RE is the vector obtained by stacking in one
column all x

e

and the vertex-edge incidence matrix A has
been used for expressing the conservation constraint. In line
with part of the literature (e.g., see [2], [15]) we make the

Assumption 1: The cost functions �

e

are assumed to be
strongly convex and twice continuously differentiable.

A. The dual problem
By following the same approach as in [15] we formulate

the dual problem by introducing Lagrange multipliers � 2
Rn. The Lagrangian function L : RE ⇥ Rn ! R associated
with the problem (2) is

L(x,�) = f(x)� �

>
(Ax� b) , (3)

and the dual function [12] is defined by minimizing L(x,�)
over x, i.e.,

q̃(�) , min

x

f(x)� �

>
(Ax� b) , (4)

that is always a concave function. For notational convenience
we introduce the function q(�) , �q̃(�) and thus the optimal
solution of the dual problem is

�

⇤
= argmax

�

q̃(�) = argmin

�

q(�). (5)

Since f(x) is strictly convex (as implied by Assumption 1)
and the optimization problem is feasible, the duality gap
is zero [12]. Thus, we can solve the dual problem (5) and
then compute the associated primal optimal variables as the
minimizer of L(x,�⇤

); in particular, using the separability
form of f(x), we can compute the optimal flow associated
with the edge e = (i, j) from only the dual variables of the
corresponding nodes:

x

⇤
e

(�

⇤
) = [�

0
e

]

�1
(�

⇤
i

� �

⇤
j

) 8e (6)

where [�

0
e

]

�1
(·) denotes the inverse function of the derivative

d�e(xe)
dxe

, i.e., [�0
e

]

�1
(y) = {x

e

| d�(xe)
dxe

= y}.
We introduce now a preliminary result that will be useful

for proving the convergence of the proposed solution.
Lemma 1: The vector function x(�) defined as the col-

umn stack of all (6), i.e.,

x(�) , col

�
[�

0
e

]

�1
�
A>

e•�
��

(7)

is globally Lipschitz continuous.
Proof: The Assumption 1 leads �

00
e

(·) to be lower
bounded by some positive value ⇠

�1. Therefore, the deriva-
tive of [�0

e

]

�1 is upper bounded by ⇠ and, thus,
��[�0

e]
�1(y1)� [�0

e]
�1(y2)

�� 6 ⇠|y1 � y2|, 8y1, y2 2 R. (8)

It follows

kx(�)� x(�)k =k[�0
]

�1
(A>

�)� [�

0
]

�1
(A>

�)k (9a)
6⇠kAk · k�� �k, 8�,� 2 Rn (9b)

where k · k is the usual induced matrix 2-norm.



B. Newton’s method

Newton’s method is an iterative procedure based on a
simple quadratic approximation for minimizing convex func-
tions. Starting with an initial guess �

(0), at each step k the
current duals �

(k) are updated by minimizing the second-
order approximation of q(�). The ordinary Newton iteration
is thus

�

(k+1)
= �

(k)
+ ↵d

(k)
, (10)

where ↵ is a properly chosen step size and d is the descent
Newton direction. Iteration (10) leads itself well to a syn-
chronous model whereby each node i computes its state and
communicates the updated value �

(k+1)
i

to the others.
For a second order Newton method, d is solution of the

linear system of equations

H(k)
d

(k)
= �g(k), (11)

where g

(k)
= g(�

(k)
) is the gradient of the negative of the

dual function at the step k, i.e., g(�

(k)
) = rq(�(k)

), and
H(k)

= H(�

(k)
) denotes its Hessian, r2

q(�

(k)
).

Considering (4), we can straightforwardly compute the
gradient g(�) that is a function of the primal optimizers:

g

(k)
= Ax(�

(k)
)� b. (12)

From the definition of the vertex-edge incidence matrix
A, it follows that the computation of the gradient is natu-
rally distributed: at each k, the node i is able to evaluate
its gradient component g

(k)
i

by using local primal iterates
x

e

(�

(k)
) for all e = (i, j) and e = (j, i). Note that, from

eq. (6), such information depends only on dual iterates �

(k)
i

and �

(k)
j

8j 2 N
i

.
The gradient g(�) satisfies nice regularities properties as

proved in the following
Lemma 2: Under Assumption 1 the gradient rq(�), is

globally Lipschitz:

krq(�)�rq(�)k 6 Kk�� �k, 8�, � 2 Rn (13)

where K = ⇠µ

n

(AA>
).

Proof: Considering the induced matrix 2-norm proper-
ties, we have

krq(�)�rq(�)k 6kAk kx(�)� x(�)k (14a)
6⇠kAk · kAk · k�� �k (14b)
=⇠µ

n

(AA>
)k�� �k, (14c)

where (14b) comes out from Lemma 1, while (14c) holds
because kAk = kA>k =

p
µ

n

(AA>
), i.e., the square root

of the max eigenvalue of the unweighted Laplacian of G.
In order to compute the dual Hessian matrix H(k), in [15]
authors consider the second order approximation of the
primal objective evaluated at the current step, this leads to

H(k)
= A

h
r2

f

⇣
x(�

(k)
)

⌘i�1
A>

. (15)

Due to the properties of strict convexity and separability
of f(x), it follows that

⇥
r2

f

�
x(�

(k)
)

�⇤�1
exists and is a

positive diagonal matrix. From the graph theory, the dual
Hessian H(k) can also be interpreted as the Laplacian matrix
of a weighted connected graph with weights [1/�00

e

(x

e

)]

�18e.

C. Colored Gauss-Seidel method

We now propose an algorithm which is based on Newton’s
iteration (10) where the Newton direction (11) is computed
in a distributed approximate way. A possible choice is
the Gauss-Seidel iterative method [1] which computes an
approximated descent direction ˆ

d

(k) whose components are

ˆ

d

(k)
i

= �
h
Ĥ

(k)
ii

i�1
ĝ

(k)
i

8i, (16)

with

Ĥ(k)
= A

h
r2

f

⇣
x(z

(k)
)

⌘i�1
A>

, (17)

ĝ

(k)
= Ax(z

(k)
)� b. (18)

The vector z

(k) is such that the node i uses the new values
of Lagrange multipliers as soon as they are computed:

z

(k)
i

=

⇣
�

(k+1)
1 , · · · ,�(k+1)

i�1 ,�

(k)
i

, · · · ,�(k)
n

⌘
. (19)

In other words, once �

i

is determined by the node i, its value
is used by all other nodes j 2 N

i

that still have to compute
their own iterates. Therefore, the ordering of nodes affects
the scheduling of the updates.

The resulting Gauss-Seidel algorithm for each node is thus
characterized by the following iterations

�

(k+1)
i

= �

(k)
i

� ↵

h
Ĥ

(k)
ii

i�1
ĝ

(k)
i

8i. (20)

The structure of the matrix Ĥ (the weighted Laplacian)
makes the iteration fully distributed. Indeed, in order to
compute the i-th element of �

(k+1), the node i requires
values of the Lagrange multipliers only from its neighbors.

According to [17] the updating rule that comes out from
the Gauss-Seidel approach could be defined as cyclic ordered
asynchronous because the update of individual states follows
a cyclic pattern defined by the nodes identifiers. Indeed,
from (19)-(20) the node i computes the Lagrange multiplier
�

(k+1)
i

as soon as its update condition is satisfied, i.e.,
the information �

(k+1)
j

is already available at all j 2 N
i

such that j < i. That means it is necessary to solve a
synchronization problem by considering the node ordering.

Beyond the benefit of distributed computation, the Gauss-
Seidel approach is motivated by the acceleration of con-
vergence rate, because the information are used for the
computation as soon as they become available (asynchronous
update). However, this approach restricts the parallelism of
the updates with respect to the synchronous case, since only
the nodes that satisfy the update condition could simultane-
ously perform the update rule (20).

In order to maximize the parallelism, a nodes clustering
could be applied yielding the so-called block Gauss-Seidel
method. A natural way of clustering the network is suggested
by the graph coloring. In graph theory, graph coloring allows
to partition the vertices set of a generic (neither necessarily



Algorithm 1: Communication protocol for node i at
iteration k

wait (8j 2 N
i

| �(j) < �(i) have completed
update function);
�

j

 read lambda(j), 8j 2 N
i

;
update function(�);

weighted, nor directed) graph G = (V, E) in C subsets,
according to a set of “colors” C = {1, 2, . . . , C} such that
no subset contains a pair of neighboring vertices. In other
words, a coloring of the graph G is a mapping � : V ! C
such that �(i) 6= �(j) if (i, j) 2 E , where �(i) is the color
of the vertex i [24]. The graph coloring can be carried out
just once during a preconditioning phase or, possibly, every
time the network topology changes (e.g., a node is added or
a link is broken).

The graph coloring problem, i.e., minimizing C, is a well-
known NP-hard problem [25], however we are interested in
coloring the graph through a distributed algorithm using a
small numbers of colors, only, not necessarily the minimum.

Let us denote by �

c

= {i 2 V | �(i) = c} the set of
n

c

nodes with color c. We use the notation �

�c 2 Rnc for
referring to the vector whose components are taken from �

by selecting only the elements indexed by �

c

. Now, instead
of (19), we should consider the vector z

(k)
c

that, according
to the colored Gauss-Seidel idea, is defined as

z

(k)
c

=

⇣
�

(k+1)
�1

, · · · ,�(k+1)
�c�1

,�

(k)
�c

, · · · ,�(k)
�C

⌘
. (21)

By some abuse of notation we will denote by ĝ

(k)
�c

and
Ĥ

(k)
�c

, respectively, the vector whose elements are selected
from the �

c

components of g(z(k)
c

), and the principal minor
of H(z

(k)
c

) obtained by selecting �

c

rows and columns.
Of course, such reordering is not needed, and only the

color ordering establishes the update execution that can be
analyzed through the introduced notation. Indeed, we can
write in a matrix form the updating rule of the colored Gauss-
Seidel algorithm for all nodes with color c 2 C as

�

(k+1)
�c

= �

(k)
�c
� ↵

h
Ĥ

(k)
�c

i�1
ĝ

(k)
�c

. (22)

The benefit of this approach is that it reduces the number
of sequential updates to the number of colors C, that is
generally much less than n, e.g., for a planar graph C

can be as low as 4 independently on n [26]. Indeed, the
coloring allows to introduce a parallelism among all nodes
with the same color: each node with the same color can
simultaneously execute the updating function (22). The syn-
chronization among nodes with different colors is guaranteed
by the color mapping as before, see Algorithm 1.

The proposed method (22) maintains its distributed prop-
erties because the matrix Ĥ

(k)
�c
2 Rnc⇥nc is diagonal and

positive definite, since the nodes in �

c

are not connected
among them and G is assumed to be strictly connected.
The description of the distributed update function for the
proposed method is given in the Algorithm 2.

Algorithm 2: update function for node i

Data: �(·), �, b
i

, ↵;
ĝ

i

= 0;

ˆ

h

i

= 0;

/* Update primals */
forall the e = (i, j) j 2 N

i

do
x

e

(�) = [�

0
e

]

�1
(�

j

� �

i

);
ĝ

i

= ĝ

i

� x

e

(�);
ˆ

h

i

=

ˆ

h

i

+ [�

00
e

(x

e

(�))]

�1;
end
forall the e = (l, i), l 2 N

i

do
x

e

(�) = [�

0
e

]

�1
(�

i

� �

l

);
ĝ

i

= ĝ

i

+ x

e

(�);
ˆ

h

i

=

ˆ

h

i

+ [�

00
e

(x

e

(�))]

�1;
end
ĝ

i

= ĝ

i

� b

i

;
/* Update duals */
�

i

 �

i

� ↵

ˆ

h

�1
i

ĝ

i

;

D. Convergence analysis

A sufficient condition for the convergence of the colored
Gauss-Seidel algorithm is here given.

Theorem 1: Consider the colored Gauss-Seidel algorithm
given by the iteration rule (22). If the Assumption 1 holds
with ⇠

�1 6 �

00
e

(·) 8e, and the step size ↵ is chosen as

0 < ↵ < 2

µ1(Ĥ
(k)
�c

)

⇠µ

n

(AA>
)

8c, k (23)

then lim

k!1 krq(�(k)
)k = 0 and lim

k!1 �

(k)
= �

⇤,
where q

⇤
= q(�

⇤
) is the optimal value of the dual problem.

Proof: Let s

(k)
c

2 Rn be a vector with all zero
elements, but components in �

c

that are equal to the vector
�[Ĥ(k)

�c
]

�1
ĝ

(k)
�c

:
⇣
s

(k)
c

⌘>
=

⇣
0, . . . , 0,�(ĝ(k)

�c
)

>
[Ĥ

(k)
�c

]

�1
, 0, . . . , 0

⌘
. (24)

Note that

z

(k)
c+1 =z

(k)
c

+ ↵s

(k)
c

, 1 6 c < C (25a)

�

(k+1)
=z

(k)
C

+ ↵s

(k)
C

. (25b)

Since rq(·) is Lipschitz continuous (Lemma 2), from
the descent Lemma [1, Ch. 3] we have

q(z

(k)
c

+ ↵s

(k)
c

) 6q(z

(k)
c

) + ↵(s

(k)
c

)

>rq(z(k)
c

)+

↵

2
⇠

2

µ

n

(AA>
)ks(k)

c

k2.
(26)

Using the definition of s

(k)
c

and since Ĥ
(k)
�c

=

(r2
q(z

(k)
c

))

�c is diagonal positive definite, then

(s

(k)
c

)

>rq(z(k)
c

) = �(s(k)
c

)

>Ĥ
(k)
�c

s

(k)
c

(27a)

6 �µ1(Ĥ
(k)
�c

)ks(k)
c

k2, (27b)

where µ1(Ĥ
(k)
�c

) is the minimum eigenvalue of the matrix
Ĥ

(k)
�c

. By replacing (27a) in (26) and denoting by �

c

the



quantity ↵

⇣
µ1(Ĥ

(k)
�c

)� ↵⇠

2 µ

n

(AA>
)

⌘
, we obtain

q(z

(k)
c

+ ↵s

(k)
c

) 6 q(z

(k)
c

)� �

c

ks(k)
c

k2. (28)

The condition (23) on ↵ guarantees the quantity �

c

being
positive. The inequality (28) is true for all 1 6 c 6 C, and
then, by iterating recursively on relations (25) and (28), we
can write

q(�(k+1)) = q(z(k)C + ↵s(k)C ) 6 q(�(k))�
CX

c=1

�cks(k)c k2. (29)

Furthermore, since q is bounded below by q

⇤, we get:

q

⇤ 6 q(�

(k+1)
) 6 q(�

(0)
)�

kX

⌧=0

CX

c=1

�

c

ks(⌧)
c

k2. (30)

By considering (30) for all k, we can conclude:
1X

⌧=0

CX

c=1

�

c

ks(⌧)
c

k2 6 q(�

(0)
)� q

⇤
<1. (31)

Therefore lim

k!1 ks(k)c

k = 0 8c. By looking at the
expression (24) and considering that Ĥ

�c is invertible, it
follows that lim

k!1 kĝ(k)
�c
k = lim

k!1 k(rq(z(k)c

))

�ck = 0

and, due to (25) lim
k!1 kz(k)c

� �

(k)k = 0 8c. It follows

lim

k!1
k(rq(�(k)

))

�ck = 0 8c. (32)

The optimality of lim

k!1 �

(k)
= �

⇤ comes from the
convexity of q(·) (concavity of the dual function q̃(·)).

IV. NUMERICAL RESULTS

The proposed approach has been compared with one of the
fastest distributed algorithm used to solve the network flow
problem currently available in the literature, i.e., the ADD-
N [15]. Such algorithm has an updating rule for � that is
synchronous and requires N +1 sub-iterations during which
all nodes need to communicate with their N -hops neighbors
(for example by using a consensus protocol).

As a case study, it has been considered a small-world
network with n = 300 and E = 6000, generated according
to the Watts-Strogatz model [27]. Anyway, similar results
have been obtained also for scale-free and random networks.
The coloring phase has been implemented in MATLAB by
using the ordering heuristic Smallest Degree Last for parallel
“greedy” graph-coloring algorithms [24], [28]. This allows
to cluster the set of nodes into C = 16 subsets in about
6.23 s. The execution time required for the preconditioning
phase depends, of course, on the complexity of the network.

As regards the flow costs, we used the objective functions
�

e

(x

e

) = exp(�x
e

) + exp(x

e

) 8e 2 E , that satisfy
Assumption 1, while the vector b has been randomly chosen
satisfying the feasibility condition.

Simulations have been performed in C++ by using the
GraphChi software [29]. It allows to analyze, process and
mine huge real-world graphs on just a laptop, by using an
asynchronous computation paradigm such that if the nodes
are not neighbors their update function can be executed in

parallel, otherwise a round robin scheduling is applied. More-
over the information are available to other nodes as soon
as they have been updated, matching the asynchronous be-
havior of Gauss-Seidel method. Nevertheless, a synchronous
updating paradigm can be ‘simulated’ by using temporary
storage of updated variables. Therefore, GraphChi has been
used for implementing and testing both colored Gauss-Seidel
and ADD-N method, for different values of N .

Simulation results show how the optimal solution is
achieved. In Fig. 2 the convergence behavior for the dual
objective function is reported, for both Gauss-Seidel and
ADD-N . Given a fixed step size ↵ = 1 (for both the
algorithms), the colored Gauss-Seidel algorithm shows per-
formances comparable to ADD-4. In Fig. 3 the error on
the flow conservation constraint is depicted, while in Fig. 4
the rate of convergence for Gauss-Seidel and ADD-N is
shown, as well. From such experiments the colored Gauss-
Seidel algorithm shows a convergence rate comparable with
that of ADD-N , in particular only for N > 4 the latter
algorithm shows greater performances, requiring, anyway,
more resources in terms of communication and elapsed time
due to the sub-iterations phase.

The scalability of both algorithms, in terms of the exe-
cution time in dependence of the parallelism degree of the
whole computation, has been then analyzed. Consider the
case in which both the algorithms are run on a cluster of
P processors. Let �t• be the time needed for executing the
update function for each method (in the case of ADD-N
that includes the elapsed time for the N + 1 sub-iterations).
The total time �T• required for running a number I• of
iterations are

�TADD�N =

l
n

P

m
(N + 1) · IADD�N�tADD�N (33a)

�TGS =

l
n

CP

m
C · IGS�tGS, (33b)

where dxe = min{n 2 Z|n > x}.
Therefore, the speed-up S of colored Gauss-Seidel with

respect to ADD-N is

S = 

IADD�N

IGS

⌃
n

P

⌥
(N + 1)⌃
n

CP

⌥
C

, (34)

where  is the �t• ratio. As shown by the experiments
discussed above, the convergence rate of both the algorithms
is comparable and, thus, the number of iterations required
for achieving a given accuracy on the solution is such that
IADD�N ⇡ IGS. If also  ⇡ 1 (both the algorithms require
approximately the same time for executing their update rule),
it comes out that it is worth to use the colored Gauss-
Seidel algorithm instead of ADD-N when P ⌧ n/C, thus
obtaining S ⇡ N+1. When P > n/C, the execution time is
still favorable for colored Gauss-Seidel if C < (N + 1)n/P

that implies S > 1. Further, we analyzed the execution time
obtained by stopping both the algorithms at the iteration 100,
and such times have been normalized with respect to �TGS,
thus obtaining the speed-up values reported in Tab. I, both
for the sequential processing (P = 1), both for the case in
which the computation uses P = 4 processors (the machine
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used a four cores processor). All measured execution times
are of the order of seconds (maximum 14 s for ADD-6).

V. CONCLUSION

In this paper it has been proposed a distributed approach
for solving the network flow problem with the aim of achiev-
ing a good scalability for large-scale networks. A colored
Gauss-Seidel algorithm has been investigated as a distributed
optimization strategy and numerical experiments have been
shown to illustrate the effectiveness of the solution, also
compared to existing approaches in the literature.
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