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Abstract— In this paper cone-copositive piecewise quadratic

Lyapunov functions (PWQ-LFs) for the stability analysis of

conewise linear systems with the possible presence of sliding

modes are proposed. The existence of a PWQ-LF is formulated

as the feasibility of a cone-copositive programming problem

which is represented in terms of linear matrix inequalities with

equality constraints. An algorithm for the construction of a

PWQ-LF is provided. Examples show the effectiveness of the

approach in the presence of stable and unstable sliding modes.

I. INTRODUCTION

Piecewise linear systems represent a particular class of
hybrid systems characterized by a partition of the state space
into regions where system dynamics can be described by
linear models [1]. We consider piecewise linear systems
where the state space partition consists of convex polyhe-
dral cones. In the interior of each cone the dynamics are
linear time-invariant, while on the cones boundaries the
system dynamics are described by the convex hull of a
finite set of known matrices, thus allowing the existence of
sliding modes [2]. Such systems are called conewise linear
systems [3], and can be viewed as a particularization of
piecewise linear differential inclusions [4], state-dependent
switched linear systems [5], or linear parameter varying
systems [6]. Despite their apparent modeling simplicity,
the stability analysis of conewise linear systems is a hard
issue, the more so in the presence of sliding behavior. The
simplest way to tackle the problem consists in employing a
common Lyapunov function [7]. To reduce conservativeness
one could use the multiple Lyapunov functions approach,
i.e., to combine Lyapunov functions defined over different
regions of the state space, see [5], [8]. In particular, when
the regions of the state space are convex polyhedra, piecewise
quadratic Lyapunov functions (PWQ-LFs) can be employed
for solving the stability problem in terms of linear matrix
inequalities (LMIs). The LMIs are typically obtained by
applying the S-procedure with quadratic forms representing
regions that include the polyhedra [9]–[11]. The S-procedure
is used also in [12] where sliding modes are considered. The
stability analysis for piecewise linear systems with sliding
modes is not a trivial issue, indeed. That has been remarkably
investigated also in [4], [7], [13] and the Introduction in [12]
clearly reports their limitations.
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In this paper the results presented by the authors in [14],
[15] and applied to Lur’e systems in [16] are extended
by including the possible existence of sliding modes and
by proposing an iterative procedure for the construction of
a PWQ-LF. The technique explicitly considers the conic
constraints by formulating a so called cone-copositive prob-
lem [17], without using the S-procedure and outer ap-
proximations of the cones. The cone-copositive problem
together with the sliding conditions are then reformulated in
terms of LMIs. Sufficient conditions for the existence of a
continuous PWQ-LF in terms of these LMIs with continuity
equality constraints are derived, thus guaranteeing the global
exponential stability of the origin of the conewise linear
system. An algorithm for the construction of the PWQ-LF
is also given. The effectiveness of the proposed approach is
illustrated by analyzing several examples.

II. PRELIMINARIES

In this section it is shown how cone-copositive problems
can be solved by translating them into equivalent copositive
problems and then expressed in terms of LMIs. To this aim
some preliminary definitions are recalled.
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are called vertices of the simplex.
Clearly in order to define a simplex in Rn we need �  n+1.
A set C ⇢ Rn is a simplicial cone if it is the conic hull of n
linearly independent points. Polyhedral cones with nonempty
interiors (proper polyhedral cones) can be always partitioned
into a finite number of simplicial cones [18]. Hereinafter,
without loss of generality, simplicial cones are considered.
Given a simplicial cone C ⇢ Rn there exists a nonsingular
matrix R 2 Rn⇥n, such that for any v 2 C one can write
v = R✓ where ✓ 2 Rn

+

. The matrix R identifies the so-called
V-representation of the cone and its columns are the extremal
rays of the cone. Each extremal ray is uniquely defined up
to a positive multiple.

Given a set X ✓ Rn and a finite positive integer ⌘, a
partition of X is the family P = {X

h

}⌘
h=1
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X = [⌘

h=1

X

h

, with the interior int(X
h

) 6= ? for all h and
int(X

h

) \ int(X
m

) = ? for h 6= m. The particular case
⌘ = 1, i.e., P = {X}, is called trivial partition of X . If
the sets X

h

are simplices the partition is called a simplicial
partition of X [19]. We denote by V(X

h

) the set of vertices
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of the simplex X

h

and by V

h

the matrix having those vertices
as columns. We can define a measure of the “fineness” of
the simplicial partition P as

�(P) , max

Xh2P
max

u,v2V(Xh)

ku� vk. (1)

Consider the set B
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= {v 2 Rn

: kvk
1

= 1}, k ·k
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being the
1-norm of a vector, i.e., the sum of the absolute values of
the vector components. The simplex S = Rn

+

\ B
1

is called
standard simplex. It is always possible to find a simplicial
partition of the standard simplex with (n�1)-simplices [19].
If the sets X

h

are simplicial cones the partition is called
a simplicial conic partition of X . We denote by {R

h

}⌘
h=1

the set of extremal ray matrices defining the cones of the
simplicial conic partition of a cone C. Note that given a
simplicial conic partition of Rn

+

the intersections of its
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uniquely provide a simplicial partition of the
standard simplex S = Rn

+

\B
1

, say PS , and also the converse
holds. More in general the following result holds.

Lemma 1: Given a simplicial cone C ⇢ Rn with extremal
ray matrix R, and the standard simplex S in Rn, any
simplicial conic partition of C uniquely corresponds to a
simplicial partition of the standard simplex and also the
converse holds.

Proof: Consider a simplicial conic partition of C with
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where R 2 Rn⇥n is the matrix of extremal rays of a V-
representation of the cone C and �

h

is the diagonal matrix
with positive diagonal elements which ensures the columns
of V

h

having unitary 1-norm, i.e., the (j, j)-th element is
given by 1/kR�1

r

h,j

k
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for j 2 {1, . . . , n} where r

h,j

is the
j-th column of the matrix R

h

. Then the columns of V

h

are
the vertices of the simplex X

h

, defining for h 2 {1, . . . , ⌘}
a simplicial partition of the standard simplex.

Now consider a simplicial partition of the standard simplex
S with corresponding matrices of vertices {V

h

}⌘
h=1

and V

h

2
Rn⇥n. Choose

R

h

= RV

h

, h 2 {1, . . . , ⌘}. (3)

The invertibility of R ensures that (3) uniquely define a
simplicial conic partition of C.

Figure 1 illustrates a four cones partition of a cone C ⇢ R2

and the corresponding simplicial partition of the standard
simplex S through (3) in Lemma 1.

A symmetric matrix M 2 Rn⇥n is cone-copositive with
respect to a cone C ✓ Rn if and only if v>Mv � 0 for any
v 2 C. A cone-copositive matrix will be denoted by M <C

0.
If the equality only holds for v = 0, then M is strictly cone-
copositive and the notation is M �C

0. In the particular case
C = Rn

+

, a (strictly) cone-copositive matrix is called (strictly)
copositive, i.e., (M �Rn

+
0) M <Rn

+
0. The notation M < 0,

i.e., without any superscript on the inequality, indicates that
M is positive semidefinite. The cone-copositivity evaluation
of a symmetric matrix M on a simplicial cone C can be
always transformed into an equivalent copositive problem,
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Fig. 1. A simplicial conic partition of a cone in R2 (gray area in the left
figure) with the correspondent simplicial partition of the standard simplex
(right), i.e., R = [r1,1 r4,2], Rh = [rh,1 rh,2], Vh = [vh,1 vh,2], with
h 2 {1, 2, 3, 4}, see (3).

as stated by [20]. Moreover a sufficient condition for cone-
copositivity in terms of LMIs can be derived.

Lemma 2: Let M 2 Rn⇥n be a symmetric matrix and
C a simplicial cone with corresponding extremal ray matrix
R 2 Rn⇥n. Then

M �C
0 (4)

if there exists a symmetric (entrywise) positive matrix N

such that
R

>
MR�N < 0. (5)

Proof: From [20, Corollary 2.21] it follows that (4) is
equivalent to

R

>
MR �Rn

+
0. (6)

By applying Theorem 1 in [16] one has that (5) implies (6)
and then the proof is complete.
The above result is valid also if the cone C is polyhedral but
not simplicial.

A condition for not cone-copositivity of a matrix can be
simply derived.

Lemma 3: Let M 2 Rn⇥n be a symmetric matrix and C
a simplicial cone with extremal ray matrix R 2 Rn⇥n. Then
M is not cone-copositive with respect to C if

r

>
Mr < 0 (7)

holds for some column r of R.
Proof: The proof directly follows from the definition

of cone-copositivity.

III. STABILITY ANALYSIS

The stability result provided in this paper is based on the
use of a continuous PWQ-LF defined over a conic partition
of the state space.

Let us consider a partition of Rn, say PRn , into a family
of � simplicial cones, i.e., a simplicial complete fan in Rn.
The cones are represented by

C
i

= {R
i

✓, ✓ 2 Rn

+

}, i 2 {1, . . . ,�} (8)



where R

i

2 Rn⇥n is a nonsingular matrix whose columns
are the extremal rays of a V-representation of C

i

.
A conewise linear system is described as follows

ẋ = A

i

x if x 2 int(C
i

), (9a)

ẋ 2 co
i2I(x)

{A
i

}x if x 2
\

i2I(x)

C
i

, (9b)

with x 2 Rn, I(x) the set of all indices i 2 {1, . . . ,�} such
that x 2 C

i

, {A
i

}�
i=1

are known real matrices and {C
i

}�
i=1

are simplicial cones given by (8) which define the simplicial
conic partition PRn .

Herein we adopt the following solution concept that allows
sliding behavior.

Definition 1: An absolutely continuous function x(t) :

R
+

! Rn that satisfies the differential inclusion (9) almost
everywhere is called Filippov solution [21].

It follows that system (9) has at least one solution for
any initial condition x

0

. We analyze the stability of the zero
solution of (9) by using Lyapunov arguments.

A. Stability on the original partition
Consider a PWQ function in the form

V (x) = x

>
P

i

x if x 2 C
i

, i 2 {1, . . . ,�}. (10)

If there exist {P
i

}�
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matrices such that (10) is continuous,
strictly positive and strictly decreasing in time along all
solutions of (9), then the system is globally exponentially
stable [4] and the function V (x) is called a PWQ-LF for (9).

The continuity of (10) on the nontrivial cones intersections
can be written as
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. Therefore the continuity conditions (11) is
guaranteed by

R

>
ij

(P

i

� P

j

)R

ij

= 0 (12)

for all i, j 2 {1, . . . ,�}, such that C
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\ C
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6= {0}.
The search for a PWQ-LF can be formulated through the

following result.
Theorem 1: Consider the set of LMIs

R

>
i

P

i

R

i

�N

Pi < 0 (13a)
�R>

i

(A

>
i

P

i

+ P

i

A

i

)R

i

�N

Qi < 0 (13b)

for all i 2 {1, . . . ,�} and

�R>
ij

(A

>
j

P

i

+ P

i

A

j

)R

ij

�N

Rij < 0 (14)

for all i, j 2 {1, . . . ,�}, such that C
i

\ C
j

6= {0}, together
with the equality constraints (12). If (12)–(14) has a solution
{P

i

, N

Pi , NQi , NRij} with P

i

2 Rn⇥n symmetric matrices,
N

Pi 2 Rn⇥n, N
Qi 2 Rn⇥n, N

Rij 2 Rmij⇥mij symmetric
positive matrices, then the conewise linear system (9) is
globally exponentially stable, with (10) being a PWQ-LF.

Proof: Consider the function (10), with the P

i

satis-
fying (12)–(14), as a candidate PWQ-LF. It is continuous
thanks to conditions (12). Condition (13a) and Lemma 2
guarantee that such function is strictly positive in the cones.
Condition (13b) and Lemma 2 ensure that it is also de-
creasing along the system trajectories when the state is in
the cones interior. When the state is on the boundaries
common to the cones, the function is strictly decreasing
with respect to all the state trajectories that satisfy the
differential inclusion (9b). Indeed, by using Lemma 2, the
inequalities (13b) and (14) imply
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for all i, j 2 {1, . . . ,�}, such that C
i

\C
j

6= {0}, respectively.
Since (15) are valid for all i, j 2 {1, . . . ,�}, by considering
the convex combinations of conditions (15) one obtains
that (10) is strictly decreasing also along trajectories lying
on the boundaries common to cones. Thus the function (10)
is a PWQ-LF for (9) which is globally exponentially stable.

B. Iterative refinement of the conic partition
Theorem 1 can be used also if the cones of the conewise

linear system are polyhedral but not simplicial. In particular,
each polyhedral cone can be partitioned into simplicial cones
and, in order to define (9), the same dynamic matrix can be
considered for all cones of its partition.

Analogously if it is not possible to determine a PWQ-LF
for the system (9) with the given conic partition, one can
restart with a new state space partition with a larger number
of simplicial cones. The first natural trial for a PWQ-LF
consists of considering the partition induced by the � cones
of the conewise linear system (9), so as shown in the previous
subsection. We consider this as a first iteration for the PWQ-
LF search. Say ⌘ such an iteration index. Then at the ⌘-th
iteration the state space partition is obtained by partitioning
each cone C

i

in (8) into ⌘ simplicial cones {C⌘

i,h

}⌘
h=1

, i.e.,

Rn

=

�[

i=1

C
i

=

�[

i=1

 
⌘[

h=1

C⌘

i,h

!
. (16)

Consider now a PWQ function in the form

V (x) = x
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}, (18)

and i 2 {1, . . . ,�}, h 2 {1, . . . , ⌘}. In other words at the
first iteration (⌘ = 1) the extremal ray matrices are given by

{R⌘

i,h

}⌘
h=1

, R

i

, with ⌘ = 1 (19)

and i 2 {1, . . . ,�}, which means that at the first itera-
tion (17)–(18) coincide with (10) and (8), respectively.

For n � 4 it is not trivial to find a procedure for the
selection of the cones of a new partition. In the following we
propose an approach which exploits the so called bisection



along the longest edge (BALE) technique of the standard
simplex [22]. The proof of Lemma 1 shows that finding
{R⌘

i,h

}�,⌘
i=1,h=1

corresponds to finding a suitable simplicial
partition PS of the standard simplex S , say P⌘

S . Without loss
of generality the same partition P⌘

S of the standard simplex
can be considered for all cones C

i

: in this way the partitions
of the different new cones will be congruent. In particular,
by using Lemma 1 and the generalization of (3) one can
write

R

⌘

i,h

= R

i

V

⌘

h

(20)

with i 2 {1, . . . ,�}, h 2 {1, . . . , ⌘}, where V

1

h

is the identity
matrix and V

⌘

h

is the matrix of the vertices of the simplex
X

⌘

h

of P⌘

S at the ⌘-th iteration.
Note that the BALE technique guarantees that the fineness

�(P⌘

S) goes to zero as the refinement steps proceed. It
provides at each iteration an increase by one of the number of
cones in the simplicial partition of C

i

and then an increase of
� new cones in the simplicial partition of the state space. In
order to carefully consider the sliding mode conditions, the
cones of the new partitions of Rn generated at each iteration
must be checked whether some of their faces belongs to a
boundary of two “original” cones C

i

and C
j

. In order to do
that at the ⌘-th iteration, for each i and for each j, one can
define a matrix R

⌘

ij,h

given by the columns of R

⌘

i,h

which
belong to the conic hull of some columns of the matrix R

ij

.
When C⌘

i,h

\ C
j

= {0} such matrix is not defined.
Theorem 1 can be now extended to the case of refined

conic partitions of the state space, i.e., to consider candidate
PWQ-LFs with a larger number of “pieces” corresponding
to many matrices {P ⌘

i,h

}⌘
h=1

for each system’s cone C
i

. This
is shown by the following result.

Theorem 2: Consider the set of LMIs
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for i, j 2 {1, . . . ,�}, and all h 2 {1, . . . , ⌘} such that the
matrix R

⌘

ij,h

is defined so as described above, together with
the equality constraints
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for i, j 2 {1, . . . ,�}, h, ` 2 {1, . . . , ⌘} where R

⌘

ij,h`

is
the matrix of common extremal rays between C⌘

i,h

and C⌘

j,`

such that C⌘

i,h

\ C⌘

j,`

6= {0}. Then the conewise linear
system (9) is globally exponentially stable if there exists an
⌘, such that the set of LMIs (21)–(22) together with (23)
has a solution {P ⌘

i,h

, N

⌘

Pi,h
, N

⌘

Qi,h
, N

⌘

Rij,h
} with P

⌘

i,h

2
Rn⇥n symmetric matrices, N⌘

Pi,h
2 Rn⇥n, N⌘

Qi,h
2 Rn⇥n,

N

⌘

Rij,h
2 Rmij,h⇥mij,h symmetric positive matrices.

Proof: The proof follows from the application of
Theorem 1 to the state space conic partition corresponding
to the ⌘-th iteration.

Note that, analogously to conditions (14) which are con-
sidered only on the boundaries of the system’s cones, the

sliding conditions (22) are written only for the boundaries
among the original cones.

The practical interest of the above result resides in the fact
that any solution of (21)–(23) directly provides the matrices
{P ⌘

i,h

}�,⌘
i=1,h=1

of a PWQ-LF (17).
A necessary condition for the existence of a PWQ-LF can

be obtained by considering the cone-copositivity definition
without invoking the sliding conditions and the continuity.

Lemma 4: The conewise linear system (9) does not admit
a PWQ-LF with the state space conic partition (16), if there
exists a cone C⌘

i,h

with a corresponding extremal ray matrix
R

⌘

i,h

2 Rn⇥n, such that the inequalities

r

>
P

⌘

i,h

r > 0 (24a)

�r>(A>
i

P

⌘

i,h

+ P

⌘

i,h

A

i

)r > 0 (24b)

have no solution P

i,h

for some column r of R⌘

i,h

.
Proof: The proof easily follows from the definition of

strict cone-copositivity.

IV. EXAMPLES

The procedure for finding a PWQ-LF for the conewise
linear system (9) is implemented in Algorithm 1. Of course
the increase of the total number of cones (� ⌘) is paid with
the increase of the computational burden, especially for high
order systems. The numerical results have been obtained by
using Matlab and CVX [23], [24] with a PC Intel Dual
Core processor at 2.8 GHz. All inequalities have been also a
posteriori checked to be strictly verified with a lowest bound
equal to 10

�8 (note that the LMIs (21)–(22) are not strict).
Consider the Example 2 in [12] with � = 0 which can be

written in the form (9) with

A

1

=

✓
�2 �2
4 1

◆
, A

2

=

✓
�2 2

�4 1

◆
(25)

where A

1

holds for x

2

� 0 and A

2

for x

2

 0. In Fig. 2
is reported the state trajectory and some level curves of the
PWQ-LF obtained by Algorithm 1 with ⌘ = 4 cones given
by the four quadrants. In Fig. 3 the time evolutions of the
state variables which present a sliding behavior are shown.
Note that the PWQ-LF, which decreases also on the sliding
modes, has discontinuities in its time derivative when the
state variables change their sign, which is coherent with the
conic state space partition into the four quadrants, see also
the level curves in Fig. 2.

Consider the Example 1 in [12] which can be written in
the form (9) with

A

1

=

✓
1 �2
2 �2

◆
, A

2

=

✓
1 2

�2 �2

◆
(26)

where A

1

holds for x

2

� 0 and A

2

for x

2

 0. Without
the conditions (22) for inclusion of sliding modes dynamics,
the problem (21) with (23) by considering a partition with
four cones given by the quadrants would be feasible, pro-
viding a wrong conclusion about the stability of the system,
analogously to what is shown in [7], [12]. By including the
conditions (22) the problem becomes infeasible.



Algorithm 1: Algorithm for finding a PWQ-LF

Data: {A
i

, R

i

}�
i=1

, ⌘

max

, i.e., the conewise linear
system and the maximum number of elements
for PS

Result: “No PWQ-LF function exists” or
“A PWQ-LF (17) exists with {P ⌘

i,h

}�,⌘
i=1,h=1

found” or
“⌘

max

has been reached”
begin

n size(A

i

);
⌘  1 ;
V

1

 I

n

;
repeat

/

*

Compute the extremal ray

matrices of the partition

*

/

for i 1 to � do

for j  1 to �, j 6= i do

for h 1 to ⌘ do

R

⌘

i,h

 R

i

V

h

;
R

⌘

ij,h

 all columns of R⌘

i,h

in the
conic hull of R

ij

;
for ` 1 to ⌘ do

R

⌘

j,`

 R

j

V

`

;
R

⌘

ij,h`

 all common columns
of R⌘

i,h

and R

⌘

j,`

;
end

end

end

end

necCond  feasible (24);
if necCond then

/

*

Feasibility for a PWQ-LF

*

/

suffCond  feasible (21)–(23);
if suffCond then

/

*

Compute the solution

*

/

{P ⌘

i,h

, N

⌘

Pi,h
, N

⌘

Qi,h
, N

⌘

Rij,h
}�,⌘
i=1,h=1

 
getSolution (21)–(23);

else

/

*

BALE refinement of the

standard simplex

*

/

{¯h, v
¯

h,l

, v

¯

h,m

}  
maxDistanceColumn ({V

h

}⌘
h=1

);
w  1

2

(v

¯

h,l

+ v

¯

h,m

);
V

0
¯

h

 [v

¯

h,1

· · · v
¯

h,l�1

w v

¯

h,l+1

· · · v
¯

h,n

];
V

00
¯

h

 
[v

¯

h,1

· · · v
¯

h,m�1

w v

¯

h,m+1

· · · v
¯

h,n

];
{V

h

}⌘+1

h=1

 
{V

1

, . . . , V

¯

h�1

, V

0
¯

h

, V

00
¯

h

, V

¯

h+1

, . . . , V

⌘

};
⌘  ⌘ + 1;

end

end

until (NOT(necCond) OR suffCond OR ⌘ > ⌘

max

);
end

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x
1

x 2

Fig. 2. State space: system trajectory (dash-dotted line) and level curves of
the resulting PWQ-LF for the system (9) with (25), which exhibits sliding
behavior.

The same result is also obtained by considering

A

1

=

✓
1 �5
1 �3

◆
, A

2

=

✓
1 5

�1 �3

◆
(27)

which are taken from Example 1.1 in [25] which exhibits
unstable sliding behavior.

Algorithm 1 can be also adopted for systems which do not
exhibit sliding. In particular consider the switched system
with dynamic matrices

A

1

=

✓
1 0

0 �1

◆
, A

2

=

✓
� �1
1 �

◆
(28)

such that

ẋ = A

1

x if x

1

(x

2

� h(x

1

)) 6 0 (29a)
ẋ = A

2

x if x

1

(x

2

� h(x

1

)) > 0, (29b)

where h(x

1

) = �x
1

/(� +

p
�

2

+ 1). The system (29) does
not admit any convex Lyapunov function [26]. By choosing
� = 1.2, Algorithm 1 provides a PWQ-LF with 20 cones. In
Fig.s 4–5 the corresponding state space trajectory and time
evolutions are shown. Note that the trajectory remains for
long time very close to the x

1

= 0 axis without sliding.
We checked Algorithm 1 also for the fourth order switched

system given by Example 7 in [27], which does not admit
a PWQ-LF with the original two halfspaces state space
partition, so as shown in that paper; our procedure provides
a PWQ-LF with a state space partition into 16 cones.

V. CONCLUSIONS

Conditions for the existence of a PWQ-LF and hence for
the exponential stability of conewise linear systems with
sliding modes have been provided. An iterative state space
partition algorithm is proposed for the search of a PWQ-LF.
Examples show the validity of the proposed approach in the
presence or not of stable and unstable sliding modes. Future
work will be dedicated to the extension of the results to the
case of piecewise affine systems.
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Fig. 3. Time evolutions of the two state variables and PWQ-LF (dashed
line) computed along the system trajectory for the system (9) with (25).
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Fig. 4. State space: system trajectory (dash-dotted line) and level curves
of the resulting PWQ-LF for the system (28)–(29).
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Fig. 5. Time evolutions of the two state variables and PWQ-LF (dashed
line) computed along the system trajectory for the system (28)–(29).
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