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Abstract

At a certain level of abstraction power converters can be represented as linear circuits connected to diodes
and controlled electronic switches. The evolutions of the electrical variables are determined by the state-dependent
switchings, which complicate the mathematical modeling of controlled power converters. Differently from the com-
plementarity models previously presented in the literature, the model proposed in this paper allows to represent as
a linear complementarity system also closed-loop power converters, without requiring the a priori knowledge of the
converter modes. A model construction procedure, not dependent on the specific converter topology, is presented.
The discretization of the continuous-time model allows to formulate mixed linear complementarity problems for the
computation of the control-to-output frequency response and the evolutions of both transient and steady-state currents
and voltages. As illustrative examples Z-source, boost and buck DC–DC power converters under voltage-mode control
and current-mode control operating both in continuous and discontinuous conduction modes are considered.
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I. INTRODUCTION

THE typical averaged and switched models of power converters are based on construction procedures which

depend on sequence of modes and operating conditions, [1], [2], [3], [4]. Consequently, the use of these

models for the analysis of the closed-loop power converters requires the introduction of suitable simplifying

assumptions, [5], [6].

Complementarity models, [7], represent an attractive solution to overcome some of these drawbacks. Recently

they have been proposed as an useful framework for modeling linear circuits with diodes and ideal switches, [8], [9].

Indeed, the complementarity framework can be used to model a wide class of nonsmooth dynamical systems, such

as mechanical systems with Coulomb friction, [10] and piecewise linear Lur’e systems, [11].

Such idea has been more specifically applied to power converters in [12]. Linear complementarity (LC) models

have been proposed for modeling specific open-loop power converters topologies: single-phase diode bridges, [13],

three-phase rectifiers, [14], switched capacitors, [15], resonant converters, [16]. Dealing with more general classes

of power converters, the complementarity models proposed in [17] and [18] are constructed by considering the

specific switches states and by assuming the a priori knowledge of the power converter configuration at each

switching time instant. A strong limitation of the models proposed in [8], [12] and [19] is that they require

switching of the sets (cones) of the complementarity variables. Unfortunately this property does not allow to obtain

the models of controlled power converters in a manageable closed form. An alternative approach with fixed cones

and characteristics depending on some external forcing variable is presented in [20]: the switch model is a signum

characteristic having the switch current as the argument and whose amplitude is a piecewise linear function of an

external control voltage. In [21] transistors are modeled within the complementarity framework, but the analysis is

limited to static circuits. In [13] the switches are modeled by means of equivalent finite resistors representing the

ON (conducting) and OFF (blocking) states determined by the signum of an external voltage signal. That model

cannot be easily generalized to the case of zero conducting and infinite blocking equivalent resistances.

The model proposed in this paper is able to represent in an LC explicit form the large signal dynamics of

closed-loop power converters. The complementarity model is simple to be built and captures all modes of the

converter, without enumerating them, nor assuming the a priori knowledge of the sequence of modes and of the

switching time instants. Such LC model is shown to be useful for the computation of the control-to-output frequency

response, which is a crucial issue for controlled power converters so as analyzed in [16], [22] and the references

therein. Moreover the proposed LC model of closed-loop power converters allows to obtain directly the closed-loop

steady-state behaviour, which is often a nontrivial task so as in the case of LCC resonant converters, [23], [24] and

modular multilevel converters, [25], [26].

The rest of the paper is organized as follows. In Section II the static LC models corresponding to the ideal diode

and the controlled switches characteristics are presented. The procedure for the construction of the dynamic LC

model of a power converter, both in open-loop and closed-loop, is described in Section III. Section IV shows how

this representation allows to compute the steady-state periodic oscillation as a solution of a mixed LC problem
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derived from the discretized closed-loop system. In Section V the approach used for the steady-state solution is

applied for the computation of the control-to-output frequency response for a Z-source converter [27] whereas the

uniqueness of the steady-state solution is guaranteed by the passivity hypothesis. In Section VI the usefulness of the

proposed technique for the computation of transient and steady-state solutions of closed-loop power converters is

numerically demonstrated by considering current-controlled and voltage-controlled boost DC–DC power converters

with stable and unstable periodic solutions [4], [28] and a closed-loop buck DC–DC converter which exhibits

multiple solutions [29]. Section VII concludes the paper.

II. COMPLEMENTARITY MODELS OF ELECTRONIC DEVICES

The idealized voltage–current characteristics of electronic devices can be represented by means of static LC

models. To show this, let us introduce the definition of a mixed LC problem, [30]. Given a vector q ∈ Rr, a matrix

M ∈ Rr×r and lower and upper bounds l, u ∈ Rr ∪ {−∞,+∞}r, a mixed LC problem consists of finding z ∈ Rr

such that

w − v = Mz + q (1a)

0 ! w ⊥ (z − l) " 0 (1b)

0 ! v ⊥ (u− z) " 0, (1c)

where “⊥” represents the orthogonality symbol, i.e., w ⊥ (z − l) stands for w⊤(z − l) = 0, and inequalities

among vectors are meant componentwise. In the case l = u, the unique solution of (1) is z = l = u. For l ̸= u the

nonnegative variables w and v are complementary meaning that componentwise at least one of the two must be zero.

The mixed LC problem is well-know in the mathematical programming theory, in fact it provides a natural setting

for the Karush–Kuhn–Tucker conditions of a quadratic program with general equality and inequality constraints, [7].

When the lower bound l is zero and the upper bound u is infinity, we get v = 0 and the mixed LC problem

becomes a classical LC problem with w and z being the usual complementarity variables. Then, given a vector

q ∈ Rr and a matrix M ∈ Rr×r, a LC problem consists of finding z such that

w = Mz + q (2a)

0 ! w ⊥ z " 0. (2b)

It is well-known that an LC problem in the form (2) has a unique solution for all q if and only if M is a P-

matrix, [7]. A matrixM is called a P-matrix if all its principal minors are positive. According to the definition, every

positive definite matrix is a P-matrix, but the converse is not true. If the matrixM is only positive semidefinite, then

the uniqueness of the LC problem solution cannot be proved, but it is possible to prove that among all solutions

of the LC problem the least-norm one is unique, [31].

The LC framework can be used to represent idealized voltage–current characteristics of electronic devices. To

this aim let us associate to (2) an ‘output’ equation in the form

ϕ = Nz, (3)
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Fig. 1. Ideal diode: (a) symbol, (b) idealized voltage–current characteristic, (c) idealized current–voltage characteristic, (d) characteristic
(ϕd,λd) with input λd = −vD and output ϕd = iD or with input λd = iD and output ϕd = −vD .

where N is a real matrix of suitable dimensions. The expressions (2)–(3) can represent an LC model for a (ϕ,λ)

electronic device characteristic: the variable λ can be interpreted as the input of the characteristic and enters into

the LC problem if the vector q depends linearly on it, and ϕ can be seen as the corresponding output. As an

example, let us consider the idealized piecewise linear diode characteristic shown in Fig.s 1(b)–1(c) and assume

that the opposite of the diode voltage, say λd = −vD, is the given input. Then the output variable of the diode

model can be chosen as the diode current ϕd = iD. By considering the resulting characteristic in Fig. 1(d) the

diode characteristic can be represented with the following LC model

ϕd = zd (4a)

wd = λd (4b)

0 ! wd ⊥ zd " 0. (4c)

The equation (4a) is in the form (3) with N = 1 and (4b)–(4c) are in the form (2a)–(2b) with M = 0 and

q = λd. Since M is zero, the current zd which satisfies (4) for a given voltage λd is not necessarily unique, while

the least-norm solution must be unique. Indeed if λd = 0 then any zd " 0 satisfies (4), but the least-norm solution

(zd = 0) is unique. Obviously (4) represents the ideal characteristic of a diode also if λd = iD and ϕd = −vD,

i.e., when the problem consists of finding a diode voltage ϕd given the diode current λd, see Figs. 1(b)–1(c).

Another typical piecewise linear representation for the diode characteristic is that shown in Fig. 2. The voltage–
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Fig. 2. Piecewise linear characteristics of a diode: (a) voltage–current characteristic, (b) current–voltage characteristic, (c) (ϕ, λ) characteristic
with input λ = −v and output ϕ = i, (d) (ϕ, λ) characteristic with input λ = i and output ϕ = −v.

current characteristic in Fig. 2(c) can be represented by the following LC model:

ϕ = zd (5a)

wd = λ+ rDzd + VF (5b)

0 ! wd ⊥ zd " 0 (5c)

while the LC model of the current–voltage characteristic in Fig. 2(d) is given by

ϕ = zd − VF − rDλ (6a)

wd = λ (6b)

0 ! wd ⊥ zd " 0. (6c)

It is now possible to construct an LC model for an electronic switch characteristic, see Fig. 3. By considering a

bipolar junction transistor the switch variables have the following meanings: iS is the collector current, vS is the

collector-emitter voltage, imax is the maximum collector current that the transistor can provide without damage,

σ ∈ [0, 1] is the normalized switch control signal proportional to the base current, – analogous interpretations of

the physical meanings for iS , vS , imax and σ are possible for other electronic switches. Then for σ = 0 (OFF) the

switching is blocking and the switch current iS is identically zero for any switch voltage vS . For σ = 1 the switch

is conducting (ON). The model also captures the switch operating condition in the so-called saturation region where

the device can provide any current between 0 and imaxσ.

Let us assume that the opposite of the diode voltage, say λc = −vS and the control signal σ are given. Then the

output variable of the switch model is chosen as the switch current ϕc = iS . The subscript “c” is used to indicate
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Fig. 3. Electronic switch: (a) symbol, (b) idealized voltage–current characteristic, (c) idealized current–voltage characteristic, (d) characteristic
with λc = −vS and ϕc = iS , (e) characteristic with λv = iS and ϕv = −vS . Without loss of generality it is assumed that the switch is able
to block also negative voltages.

that the variable ϕ in this case is a current. Then the voltage–current characteristic in Fig. 3(d) can be represented

with the following LC model

ϕc = zc1 (7a)

wc1 = zc2 + λc (7b)

wc2 = −zc1 + imaxσ (7c)

0 ! wc ⊥ zc " 0, (7d)

where wc = col(wc1 , wc2), zc = col(zc1 , zc2), and col( · ) indicates a vector obtained by stacking in a unique column

the column vectors in its argument. The model (7) is in the form (2)–(3) with N =
[

1 0
]

, q = col(λc, imaxσ)

and

M =

⎡

⎣

0 1

−1 0

⎤

⎦ . (8)

Expressions (7) can be explained by looking at the possible values assumed by λc. The following cases are possible,
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see Fig. 3(d):

λc > 0 ⇒ wc1 > 0 ⇒ zc1 = 0 ⇒ ϕc = 0 (9a)

λc < 0 ⇒ zc2 > 0 ⇒ wc2 = 0 ⇒ ϕc = zc1 = imax σ (9b)

λc = 0 ⇒ {wc1 " 0, zc2 " 0} ⇒ ϕc = zc1 ∈ [0, imax σ]. (9c)

For σ ∈ [0, 1] the model (7) describes the set of possible voltage–current characteristics obtained by varying σ

between 0 and 1. The matrix (8) is positive semidefinite (and not P-matrix) and for λc = 0 the solution zc of (7)

is not unique, see (9c). On the other hand among all possible solutions of (7), the following least-norm solution

λc > 0 ⇒ zc = col(0, 0) (10a)

λc < 0 ⇒ zc = col(imaxσ,−λc) (10b)

λc = 0 ⇒ zc = col(0, 0) (10c)

is unique.

An analysis similar to that presented above can be done if the switch current iS and the switch command

σ are given and the corresponding switch voltage must be found. Indeed one can consider the current–voltage

characteristic shown in Fig. 3(e), where ϕv = −vS is the switch voltage and λv = iS is the switch current. A

possible LC model can be written as

ϕv = zv1 − zv2 (11a)

wv1 = λv (11b)

wv2 = −λv + imaxσ (11c)

0 ! wv ⊥ zv " 0, (11d)

where wv = col(wv1 , wv2) and zv = col(zv1 , zv2). The model (11) is in the form (2)–(3) with N =
[

1 −1
]

,

q = col(λv,−λv + imaxσ) and M being the zero matrix. The expressions (11) can be explained by considering the

different ranges for λv . The following cases are possible

λv = 0 ⇒ {wv1 = 0, wv2 = imax σ} ⇒

⎧

⎪

⎨

⎪

⎩

0 < σ ! 1 ⇒ zv2 = 0 ⇒ ϕv = zv1 " 0

σ = 0 ⇒ ϕv = zv1 − zv2 ∈ R

(12a)

λv = imaxσ ⇒

⎧

⎪

⎨

⎪

⎩

0 < σ ! 1 ⇒ wv1 > 0 ⇒ zv1 = 0 ⇒ ϕv = −zv2 ! 0

σ = 0 ⇒ see (12a)
(12b)

0 < λv < imaxσ ⇒ {wv1 > 0, wv2 > 0} ⇒ ϕv = 0. (12c)

Consider also the antiparallel connection of an electronic switch and a diode. Assume that λ is the opposite

of the voltage across the parallel, that is equal to the voltage across the switch and i is the total current through

the parallel, that is the difference between the switch and the diode currents. By combining the voltage–current
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Fig. 4. Antiparallel connection of an electronic switch and a diode: (a) symbol, (b) idealized voltage-current characteristic, (c) idealized
current-voltage characteristic.

characteristic (ϕc,λc) of the electronic switch in Fig. 3(d) with the voltage–current characteristic (ϕd,λd) of the

diode in Fig. 1(d), one gets the voltage–current piecewise linear characteristic of the antiparallel connection in

Fig. 4(b). The resulting characteristic has one breaking point and it can be modelled by the LC model

ϕ = −z + imaxσ (13a)

w = −λ (13b)

0 ! w ⊥ z " 0. (13c)

The same reasoning can be repeated also when the voltage of the antiparallel connection is considered as the output

and the current as the input, see Fig. 4(c). The corresponding LC model can be written as

ϕ = −z (14a)

w = −λ+ imaxσ (14b)

0 ! w ⊥ z " 0. (14c)

Remark 1: The LC models of diodes and controlled switches are the basic elements from which more complex

piecewise linear characteristics of electronic devices can be represented in the complementarity form. For the sake

of simplicity in the sequel only the LC models (4), (7) and (11) will be considered, though the modeling approach

proposed in this paper can be extended to the case of more involved piecewise linear characteristics of electronic

devices.

The LC models of the electronic devices can be suitably collected into a compact complementarity representation

which is useful for the formulation of the entire power converter complementarity model. Let us assume that the

power converter under investigation has Nd diodes, Nc switches with currents as output variables and Nv switches

with voltages as output variables. With some abuse of notation let us redefine the following variables: ϕd and λd are

the column vectors whose components are the voltages and currents through the Nd diodes, ϕc is the column vector
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of the Nc switches currents and λc are the corresponding voltages, ϕv is the column vector of the Nv switches

voltages and λv are the corresponding currents.

By defining the column vectors

ϕ = col(ϕd,ϕc,ϕv), (15a)

λ = col(λd,λc,λv), (15b)

wo = col(wd, wc, wv), (15c)

zo = col(zd, zc, zv), (15d)

σ = col(σc,σv), (15e)

the LC model obtained by collecting all devices characteristics can be written as

ϕ = Bϕzo (16a)

wo = Cϕλ+Dϕzo +Gϕσ (16b)

0 ! wo ⊥ zo " 0, (16c)

where Bϕ, Cϕ, Dϕ and Gϕ can be easily obtained.

The model (16) is in the form (2)–(3) with N = Bϕ, q = Cϕλ + Gϕσ and M = Dϕ. Then the idealized

characteristic of electronic devices commonly present in a generic power converter can be represented in the

compact LC form (16).

III. COMPLEMENTARITY DYNAMIC MODEL

In this section it is shown that the model of a wide class of closed-loop power converters can be written in the

following dynamic LC form

ẋ = Ax+Bz + Ee (17a)

w = Cx+Dz + Fe (17b)

0 ! w ⊥ z " 0, (17c)

where x is the state vector, w and z are complementarity variables, e is the vector of the exogenous inputs and A,

B, C, D, E, F are constant matrices of suitable dimensions.

The construction of the complementarity model is modular in the sense that it directly follows by associating the

converter dynamic model – derived by standard methods and depending only on its topology – with the electronic

devices characteristics. A block scheme representation, corresponding to the model (17) decomposed into its major

subsystems, is shown in Fig. 5. The model construction procedure is applied step-by-step to a boost DC–DC

converter with voltage-mode pulse-width modulation (PWM) control, see Fig.s 6 and 7.
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Fig. 5. Block diagram of the LC model for a closed-loop power converter.

A. Open-loop LC model

As a preliminary step it is shown that a dynamic model of open-loop power converters can be written in the

form (17). A typical approach for deriving a power converter dynamical model consists of extracting the diodes

and switches to the ports and applying the Kirchhoff laws to the branches (and links) of a proper tree of the graph

associated to the circuit, [32]. In particular, suppose that the capacitors do not form a loop (with or without voltage

sources) and inductors do not form a cut set (with or without current sources). Then by applying the Kirchhoff

laws, a state-space model in the following form can be obtained

ẋo = Aoxo +Boϕ+ Eoeo (18a)

λ = Coxo +Doϕ+ Foeo, (18b)

where xo ∈ RNo is the state vector of the open-loop system, eo denotes the vector of the external sources for the

open-loop system and (ϕ,λ) are the voltage–current or current–voltage pairs of the electronic devices.

By using (16) with (18) the model of an open-loop power converter can be written in the following LC form

ẋo = Aoxo +BoBϕzo + Eoeo (19a)

wo = CϕCoxo + (CϕDoBϕ +Dϕ)zo + CϕFoeo +Gϕσ (19b)

0 ! wo ⊥ zo " 0. (19c)

The model (19) corresponds to the dashed boxed block in Fig. 5, with wo and zo being ‘internal’ complementarity

variables, xo the state vector, eo the exogenous input and σ the control input, i.e., the vector of the commands to

the electronic switches. For open-loop controlled converters the vector σ can be included into the exogenous vector

eo, then the model (19) is in the form (17).

As an illustrative example consider the boost DC–DC converter depicted in Fig. 6. Denote eo the input voltage,

xo1 the inductor current, xo2 the capacitor voltage, (ϕc,λc) the current–voltage pair of the electronic switch, (ϕd,λd)
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∫
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0
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y

−
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eσ2

−

σ

Fig. 7. Block diagram of a proportional–integral controller: eσ1
is the reference signal for the output variable y;m is the modulation signal; eσ2

is the carrier signal; xσ is the controller state variable (the integral of the error); kp and ki are the proportional and integral gains, respectively;
σ is the switching signal.

the voltage–current pair of the diode. By applying the Kirchhoff laws, the circuit model can be written as follows

ẋo1 = −
R1

L1
xo1 −

1

L1
xo2 +

1

L1
ϕd +

1

L1
eo (20a)

ẋo2 =
1

C1
xo1 −

1

R2C1
xo2 −

1

C1
ϕc (20b)

λd = xo1 − ϕc (20c)

λc = −xo2 + ϕd (20d)

which is in the form (18) with xo = col(xo1 , xo2), ϕ = col(ϕd,ϕc) and λ = col(λd,λc).

By using (4) and (7), or equivalently by considering (16) with Nd = Nc = 1 and Nv = 0, the devices

characteristics can be represented as follows

ϕd = zd (21a)

ϕc = zc1 (21b)

wd = λd (21c)

wc1 = λc + zc2 (21d)

wc2 = −zc1 + imaxσ (21e)

0 ! wo ⊥ zo " 0 (21f)

which are in the form (16) with ϕ = col(ϕd,ϕc), λ = col(λd,λc), zo = col(zd, zc1 , zc2) and wo = col(wd, wc1 , wc2).

Then by combining (20) and (21) the open-loop LC model takes the form (17) with e = col(eo,σ).
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B. Closed-loop LC model

The closed-loop LC model of power converters can be obtained by specifying the dependencies of the Ns =

Nc +Nv switching signals σ on the state and on the exogenous inputs. As an example consider that the switches

are controlled by means of a PWM technique. Then define λσ as the difference between the modulation signal m

and the carrier signal eσ2
, and σ as a step function whose argument is λσ , see Fig. 7. A scalar switching signal σ

can be represented by means of the following LC model

σ = zσ1
(22a)

wσ1
= zσ2

− λσ (22b)

wσ2
= −zσ1

+ 1 (22c)

0 ! wσ ⊥ zσ " 0, (22d)

where wσ = col(wσ1
, wσ2

), zσ = col(zσ1
, zσ2

). The model (22) can be explained by considering the sign of λσ .

If λσ < 0, since zσ2
is nonnegative, from (22b) it will be wσ1

strictly positive and, by the using complementarity

constraint (22d), from (22a) we get σ = zσ1
= 0, i.e., the switch is OFF. If λσ > 0 from (22b) it must be zσ2

strictly positive and then, by using the complementarity constraint (22d), it will be wσ2
= 0, and (22c) with (22a)

leads to σ = zσ1
= 1, i.e., the switch is ON. Finally, if λσ = 0 the equation (22b) does not impose any constraint

on zσ2
and then (22b) with the nonnegative constraint on wσ1

implies that σ = zσ1
can take any value within the

interval [0, 1].

By using (22), the Ns switching signals can be represented all together in the following compact complementarity

form

σ = Bσzσ (23a)

wσ = Cσλσ +Dσzσ + γσ (23b)

0 ≤ wσ ⊥ zσ ≥ 0, (23c)

where zσ ∈ R2Ns is the vector of all complementarity variables required to represent the switching signals, and the

matrices can be simply obtained.

In order to complete the closed-loop LC model of a power converter, a model of the controller must be constructed,

see Fig. 5. In particular, for a wide class of practical controllers the control signal can be represented as the output

of a linear dynamic model that computes its control action by using information on the power converter state xo

and, possibly, on other exogenous signals

ẋσ = Aσxσ +Aσoxo + Eσoeo + Eσeeσ (24a)

λσ = Cmσxσ + Cmoxo + Fmeeσ (24b)

with xσ ∈ RNσ being the state of the controller and eσ having the reference inputs and other control inputs as

components.
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Remark 2: The complementarity framework can be used to represent a more general class of controllers, e.g.,

those consisting of linear parts combined with piecewise linear, quantized or hysteretic characteristics, or more

in general all relationships representable within the complementarity framework. In these cases LC models of

piecewise linear characteristics and algebraic manipulations, similar to those presented in this paper, allow to write

the closed-loop power converter in the form (17). In Section VI-C this will be demonstrated for current-mode

controlled power converters.

The complementarity model corresponding to the block scheme in Fig. 5 is then complete. In particular: (24)

is the controller model, (23) is the modulator model and (19) is the model of the circuit including the electronic

devices characteristics (the dash boxed block). By collecting (19)–(24) and by defining

x = col(xo, xσ), (25a)

e = col(eo, eσ, 1Ns
), (25b)

z = col(zo, zσ), (25c)

w = col(wo, wσ), (25d)

the complete model of the controlled power converter can be written in the form (17) with

A =

⎡

⎣

Ao 0

Aσo Aσ

⎤

⎦ , (26a)

B =

⎡

⎣

BoBϕ 0

0 0

⎤

⎦ , (26b)

C =

⎡

⎣

CϕCo 0

CσCmo CσCmσ

⎤

⎦ , (26c)

D =

⎡

⎣

CϕDoBϕ +Dϕ GϕBσ

0 Dσ

⎤

⎦ , (26d)

E =

⎡

⎣

Eo 0 0

Eσo Eσe 0

⎤

⎦ , (26e)

F =

⎡

⎣

CϕFo 0 0

0 CσFme γσ

⎤

⎦ . (26f)

It is important to highlight that the model (17) contains all the possible operating modes of the closed-loop power

converter and that the matrices A, B, C, D, E, F are constant.

Going back to the boost illustrative example, consider a proportional–integral controller whose input is the error

between the output voltage y = xo2 and its reference value, say eσ1
, see Fig. 7. By indicating with xσ the state

variable corresponding to the output of the integrator, with eσ2
the carrier signal, with kp and ki the proportional
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and integral gains of the controller, respectively, the controller dynamics can be written as

ẋσ = −xo2 + eσ1
(27a)

λσ = ki xσ − kp xo2 + kp eσ1
− eσ2

(27b)

which are in the form (24) with eσ = col(eσ1
, eσ2

).

The switching signal σ can be expressed by using the model (22). Let us define x = col(xo, xσ), e = col(eo, eσ).

By using (26), or equivalently by substituting (22a) in (21e) and (27b) in (22b), the closed-loop model can be

written in the dynamic LC form (17) with the following matrices

A =

⎡

⎢

⎢

⎢

⎣

−R1

L1
− 1

L1
0

1
C1

− 1
R2C1

0

0 −1 0

⎤

⎥

⎥

⎥

⎦

, (28a)

B =

⎡

⎢

⎢

⎢

⎣

1
L1

0 0 0 0

0 − 1
C1

0 0 0

0 0 0 0 0

⎤

⎥

⎥

⎥

⎦

, (28b)

C =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0

0 −1 0

0 0 0

0 kp −ki

0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (28c)

D =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 −1 0 0 0

1 0 1 0 0

0 −1 0 imax 0

0 0 0 0 1

0 0 0 −1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (28d)

E =

⎡

⎢

⎢

⎢

⎣

1
L1

0 0 0

0 0 0 0

0 1 0 0

⎤

⎥

⎥

⎥

⎦

, (28e)

F =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0

0 0 0 0

0 0 0 0

0 −kp 1 0

0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (28f)

The LC model (17) with the matrices (28) represents the dynamic evolutions of the closed-loop DC-DC boost

converter for all possible operating modes, initial conditions and exogenous inputs.
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IV. TIME-STEPPING AND STEADY-STATE SOLUTIONS

The model (17) can be used to compute the transient time-stepping evolution and the steady-state oscillation

exhibited by a controlled converter. To this aim let us discretize the system (17) with a sampling period h. By

considering, for instance, the Tustin method one obtains the following discrete-time system

xk −Azxk−1 = Bz(zk−1 + zk) + Ez(ek−1 + ek) (29a)

wk = Cxk +Dzk + Fek (29b)

0 ! wk ⊥ zk " 0 (29c)

with k = 1, 2, . . . , Nh, xk = x(kh) and analogously for the other variables, and the matrices are given by

Az =

(

INx
−

h

2
A

)−1 (

INx
+

h

2
A

)

, (30a)

Bz =
h

2

(

INx
−

h

2
A

)−1

B, (30b)

Ez =
h

2

(

INx
−

h

2
A

)−1

E, (30c)

where INx
is the Nx×Nx identity matrix and Nx = No+Nσ is the number of the state variables of the closed-loop

power converter.

Given zk−1, ek−1, ek and xk−1, one can solve (29a) for xk and substitute this value in (29b) that, together

with (29c), will be used for finding zk. Therefore the time-stepping evolution can be obtained by iterating the

solution of LC problems in the form

wk = Mzk + qk (31a)

0 ! wk ⊥ zk " 0 (31b)

with

M = CBz +D (32)

and

qk = CAzxk−1 + (CEz + F )ek + CBzzk−1 + CEzek−1 (33)

for k = 1, 2, . . . , Nh. Each LC problem (31) can be solved by using standard (and efficient) algorithms widely

studied in the complementarity literature [7].

The dynamic LC model (29) can be used also to compute steady-state oscillations exhibited by closed-loop power

converters. Let us assume that the system (17) has a periodic absolutely continuous solution x(t) = x(t + T ) for

every continuous-time instant t with T being the known period of the solution. We assume that the convergence

property holds, i.e., the continuous piecewise linear interpolation of the samples sequence xk given by (29) converges

to the continuous-time solution x(t) of (17) as h = T/Nh goes to zero. In particular, we assume that (29) has a

periodic solution of period Nh, approximating the periodic continuous-time solution of period T of the system (17).
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By defining

x̄ = col(x1, x2, . . . , xNh
), (34a)

ē = col(e1, e2, . . . , eNh
), (34b)

z̄ = col(z1, z2, . . . , zNh
), (34c)

w̄ = col(w1, w2, . . . , wNh
) (34d)

with x ∈ RNx ·Nh , z ∈ R(4Ns+Nd) ·Nh and by using the periodicity condition x0 = xNh
, we can write simultane-

ously the equations (29) along the period Nh which leads to

0 = Ax+Bz + E e (35a)

w = Cx+Dz + F e (35b)

with

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−INx
0 · · · 0 Az

Az −INx
· · · 0 0

...
...

. . .
...

...

0 0 · · · Az −INx

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (36a)

B =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Bz 0 · · · 0 Bz

Bz Bz · · · 0 0
...

...
. . .

...
...

0 0 · · · Bz Bz

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (36b)

C = INh
⊗ C, (36c)

D = INh
⊗D, (36d)

E =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Ez 0 · · · 0 Ez

Ez Ez · · · 0 0
...

...
. . .

...
...

0 0 · · · Ez Ez

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (36e)

F = INh
⊗ F, (36f)

where ⊗ denotes the Kronecker product.

Remark 3: By discretizing (17) with the backward Euler or the Zero–Order–Hold techniques and by using similar

arguments, one can obtain corresponding representations in the form (35) with suitable A, B, C, D, E, F .

From (36a) one obtains

det(A) = (−1)Nhdet(INx
−ANh

z ) (37)
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then A is invertible if Az has no eigenvalues in 1, which corresponds to A having no eigenvalues in the origin,

see (30a).

If the matrix A is invertible, the periodic solution of (29) can be obtained by formulating a suitable LC problem.

Indeed by solving (35a) for the vector x we obtain

x = −A
−1

(B z + E e). (38)

Then by substituting (38) in (35b) we obtain

w = Mz + q (39a)

0 ! w ⊥ z " 0 (39b)

with

M = −CA
−1

B +D (40)

and

q = (−CA
−1

E + F ) e, (41)

which is a classical LC problem in the form (2). The solution z can be used in (38) to obtain the periodic steady-state

solution x.

Remark 4: If the matrix A is not invertible (which is the case for the closed-loop boost converter considered

above, see (28a), (30a) and (37)), one can define a mixed LC problem (1) which allows to avoid the inversion of

A for the computation of the periodic solution. Indeed the system (35) can be written in the form (1) by defining

z = col(x, z), (42a)

M =

⎡

⎣

A B

C D

⎤

⎦ , (42b)

q =

⎡

⎣

E

F

⎤

⎦ e, (42c)

l = col(−∞Nx ·Nh
, 0), (42d)

u = col(+∞Nx ·Nh
,+∞(4Ns+Nd) ·Nh

), (42e)

where ∞N is the N -th dimensional vector of ∞. The choice of infinite lower and upper bounds implies that the

variable w and the variable v associated to x are zero. This permits to formulate (35) as a mixed LC problem.

V. OPEN-LOOP POWER CONVERTERS ANALYSIS

The approach for the computation of the steady-state solution can be used to determine the control-to-output

frequency response of power converters, that is usually calculated by considering open-loop models. Then in the

following, we refer to the application of the technique presented in the previous section by considering the matrices

A = Ao, B = BoBϕ, C = CϕCo, D = CϕDoBϕ +Dϕ, (43)
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Fig. 8. Z-source DC–DC power converter.

see (17) and (19). A useful property for such analysis is the uniqueness of the steady-state solution x which

corresponds to the unique least-norm solution z of the LC problem (39)–(41), or if A is not invertible to the

solution of the mixed LC problem (1) with (42). Conditions for such uniqueness can be obtained by using the

passivity concept. In particular, if the open-loop model (18) of a power converter is passive with respect to the

input ϕ and the output λ (with ϕ and λ being the input-output of the discussed idealized electronic devices), then

the complementarity problem (39) has a unique least-norm solution.

As an example let us consider the Z-source DC–DC converter in Fig. 8 where eo is the input voltage, xo1 , xo3 , xo5

are the currents of the inductors, xo2 , xo4 , xo6 are the voltages of the capacitors, (ϕc,λc) is the current–voltage

pair of the electronic switch, (ϕd,λd) is the voltage–current pair of the diode. By applying the Kirchhoff laws to

the circuit one obtains

ẋo1 = −
(R1 +R2)

L1
xo1 −

1

L1
xo2 +

R2

L1
xo5 +

1

L1
ϕd +

R2

L1
ϕc +

1

L1
eo (44a)

ẋo2 =
1

C1
xo1 −

1

C1
xo5 −

1

C1
ϕc (44b)

ẋo3 = −
(R1 +R2)

L1
xo3 −

1

L1
xo4 +

R2

L1
xo5 +

1

L1
ϕd +

R2

L1
ϕc +

1

L1
eo (44c)

ẋo4 =
1

C1
xo3 −

1

C1
xo5 −

1

C1
ϕc (44d)

ẋo5 =
R2

L2
xo1 +

1

L2
xo2 +

R2

L2
xo3 +

1

L2
xo4 − 2

R2

L2
xo5 −

1

L2
xo6 −

1

L2
ϕd − 2

R2

L2
ϕc −

1

L2
eo (44e)

ẋo6 =
1

C2
xo5 −

1

R3C2
xo6 (44f)

λd = xo1 + xo3 − xo5 − ϕc (44g)

λc = −R2xo1 − xo2 −R2xo3 − xo4 + 2R2xo5 + ϕd + 2R2ϕc + eo (44h)

which is the model in the form (18) with xo = col(xo1 , xo2 , xo3 , xo4 , xo5 , xo6), ϕ = col(ϕd,ϕc) and λ = col(λd,λc).

It is easy to show that the model is passive with respect to the input ϕ and the output λ.

Moreover by substituting the switch and the diode complementarity models (7) and (4), respectively, the resulting

Z-source converter model in the form (19) is passive with respect to the input zo and the output wo.

A typical approach in order to obtain the control-to-output frequency response of power converters consists of
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Fig. 9. First harmonics of the output voltage of the Z-source converter obtained with the LC steady-state approach (*), the averaged model
(o) and the analytical solution (#) for different values of Np.

considering a PWM with sinusoidal modulation signal eσ1
= V0 + V1sin(2πt/T ) and a periodic carrier signal,

say eσ2
. Without loss of generality it is useful to consider the modulation signal period T proportional to the

carrier signal period Tc, i.e., T = NpTc where Np is a positive integer. The sampling period h can be chosen as

h = T/Nh = TcNp/Nh. By considering Fig. 7 without the feedback, i.e., y = 0, kp = 1 and ki = 0, one can write

λσ = eσ1
− eσ2

, (45)

which is in the form (24b). The model of the power converter can be written in the form (17) by using (44) with (4)

for the pair (ϕd,λd), (7) for the pair (ϕc,λc), (22) for the switching signal σ, (45) for the variable λσ and by

defining x = xo, e = col(eo, eσ1
, eσ2

, 1), z = col(zd, zc1 , zc2, zσ1
, zσ2

) and w = col(wd, wc1 , wc2 , wσ1
, wσ2

).

The proposed LC approach for the computation of the steady-state solution can be applied to the resulting model.
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Fig. 10. Current through the filter capacitor C2.

Consider the following circuit parameters L1 = 175 µH, C1 = 220 µF, R1 = 0.42 Ω, R2 = 0.22 Ω, R3 = 50 Ω,

L2 = 330 µH, C2 = 470 µF, and imax = 5 A and eo = 12 V. The modulation voltage eσ1 is a sinusoidal signal

with V0 = 0.3 V and V1 = 0.03 V and the carrier signal eσ2 is a sawtooth with unitary amplitude and frequency

1/Tc = 100 kHz. Figure 9 shows the amplitude and the phase of the first harmonic of the steady-state output

voltage xo6 obtained by varying Np = 2, 3, . . . , 10 with Nh = 4000, compared with the results obtained by using

the averaged model and the analytical solution obtained by considering the a priori knowledge of the commutation

time instants and the sequence of the modes. These data are not required for the computation of the complementarity

solution which provides these information as results.

Figure 9 confirms the good accuracy of the complementarity approach whose results are very close to the analytical

solution. Instead, at 50 kHz, corresponding to Np = 2, we can note the accuracy reduction of the averaged model

when the frequencies of the modulation and carrier signals become closer.

The LC model captures the switched behavior of the converter independently of the modulation frequency,

provided that a sufficiently small sampling period h is selected.

Once again it is important to highlight that the same LC model is valid for all operating conditions and does not

require the a priori knowledge of the modes sequence.

In the following, the control-to-output response is obtained by considering a constant control voltage, as in [33]

where a Z-source converter with the parasitic resistances is considered. The model of the Z-source converter is built

by considering the complementarity model of the diode and the electronic switch with parasitics, see Section II.

In order to prove the efficiency of the proposed approach, we have compared our results with the theoretical

and experimental results presented in [33], see Fig. 10 and Table I. In particular, Fig. 10 shows the steady-state

evolution of the current through the filter capacitor C2, while Table I summarizes the values of some key parameters

corresponding to the steady-state analysis. The validity of the complementarity approach is confirmed.
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Parameter Predicted Value [33] Measured Value [33] MLCP procedure
average xo2 16.34 V 16.2 V 16.33 V

inductor L1 voltage (switch ON) 16.34 V 16 V 16.33 V

inductor L1 voltage (switch OFF) −4.34 V −4.6 V −4.33 V

inductor Lf voltage (switch ON) −16.34 V −16 V −16.13 V

inductor Lf voltage (switch OFF) −4.34 V −4.6 V −4.13 V

peak-to-peak inductor L1 current 309.5 mA 310 mA 309.27 mA

peak-to-peak inductor Lf current 309.5 mA 312.5 mA 306.13 mA

TABLE I
THEORETICAL, EXPERIMENTAL AND SIMULATION RESULTS

VI. SOME EXAMPLES OF CLOSED-LOOP POWER CONVERTERS ANALYSIS

The proposed LC modeling approach can be used for the computation of the transient and steady-state solutions of

closed-loop power converters. Before analyzing some examples, it is interesting to make a preliminar consideration

on the passivity of closed-loop power converters. We were not able to find a power converter with a closed-loop

model being passive with respect to the complementarity variables: for all cases analyzed the passivity property is

lost when going from open-loop to closed-loop models. If the closed-loop complementarity model is not passive, it

is not possible to conclude the uniqueness of the solution of (39). However, the interesting thing is that closed-loop

converters can be still analyzed by using the complementarity modeling approach and the steady-state computation

procedure presented above. Indeed, for determining the multiple solutions one can enlarge the complementarity

problem with opportune constraints [34] or initialize the LC problem solver with different initial guesses [30].

The numerical results, presented in this section, are verified by considering the corresponding results provided

by PLECS, a toolbox for Simulink/MATLAB that is specifically designed for the simulation and analysis of power

electronics systems [35]. In particular the PLECS steady-state results are obtained by using the Steady-State Analysis

Block and the continuous-time state-space method which requires to use the variable-step Simulink solver. All LC

problems are solved by using the PATH tool [30].

A. Boost converter in discontinuous conduction mode

Consider the boost DC–DC converter shown in Fig. 6 with a voltage-mode PWM and a proportional–integral

controller. The circuit and controller parameters are: R1 = 0.1 Ω, L1 = 100 µH, C1 = 200 µF, R2 = 20 Ω,

kp = 0.1, ki = 400, imax = 5 A, eo = 10 V, eσ1
= 15 V and eσ2

is a sawtooth with unitary amplitude and

frequency 1/Tc = 5 kHz. The closed-loop power converter can be modeled in the form (17) with the matrices

given by (28). Such model is valid for all operating conditions (continuous and discontinuous conduction modes)

of the power converter. A periodic solution of period Tc is expected.

By discretizing the system with Nh = 130 samples per period, which corresponds to h = 1.53 µs, we can

construct the mixed LC problem (1) with the matrices defined in (30), (36), and (42). Figure 11 shows the
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Fig. 11. Steady-state inductor current and output voltage computed by the LC procedure for the closed-loop boost DC–DC converter in
discontinuous conduction mode.
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Fig. 12. Error in the trajectory computation obtained by varying Nh ∈ [42, 642] for the closed-loop boost DC–DC converter in discontinuous
conduction mode. The horizontal axis is log10(1/Nh) and the vertical axis is the log10 max |xoi,plecs − xoi| with i = 1 (*) and i = 2 (o). The

dashed lines are the linear least square interpolations.

solutions obtained through the LC procedure. The computation time required to solve the mixed LC problem

is 1.06 s. The results show that the proposed algorithm is able to detect the steady-state behavior of the closed-loop

converter operating in discontinuous conduction mode, which is a situation difficult to be a priori predicted without

introducing some simplifying assumptions. Figure 12 shows that the maximum error decreases when Nh increases,

thus confirming the effectiveness of the proposed approach.
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Fig. 13. Time evolution obtained with the time-stepping LC procedure for the closed-loop boost DC–DC converter.
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Fig. 14. Phase plane corresponding to the stable (continuous line) and the unstable (dashed line) solutions obtained with the LC technique
applied to the closed-loop boost DC–DC converter.

The non-regularity of the computed error is mainly due to the chosen discretization technique. This phenomenon

is generally observed when a high order method is used for a solution with limited smoothness, see [10, §9.1].

B. Boost converter with an unstable solution

Consider the boost DC–DC converter shown in Fig. 6 with a PWM and a proportional controller whose scheme

is in Fig. 7 where y = k1xo1 + k2xo2 , eσ1
is the reference output voltage and the integral term is zero, i.e., ki = 0.

This example shows that the LC approach is able to compute also unstable steady-state solutions. The matrices of
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Fig. 15. Steady-state inductor current and capacitor voltage computed by solving the mixed LC problem described in Section IV and applied
to the boost DC–DC converter: stable solution (continuous line) and unstable solution (dashed line).

the form (17) can be simply obtained by the procedure in Section III. The following parameters are used: R1 = 0 Ω,

L1 = 5.24 µH, C1 = 0.2 µF, R2 = 16 Ω, k1 = −0.1, k2 = 0.01, kp = 1, imax = 5 A, eo = 4 V, eσ1
= 0.48 V

and eσ2
is a sawtooth with unitary amplitude and frequency 1/Tc = 500 kHz.

In Fig. 13 it is depicted the time evolution of the stable solution obtained with the time-stepping numerical

integration of the LC model and by choosing as initial conditions xo1 = 0.1 A and xo2 = 8 V. The results confirm

those reported in [28].

In [28] it is shown that the closed-loop power converter exhibits two periodic solutions with period Tc: one stable

and another unstable. Figure 14 shows the stable (continuous line) and the unstable (dashed line) solutions in the

current–voltage plane obtained with the LC approach and Nh = 400, which corresponds to 0.005 µs. The results

are also coherent with those presented in [36]. The two solutions are obtained by using the PATH algorithm [30]

with zero (nonzero) initial guess for the stable (unstable) solution. In Fig. 15 such steady-state signals have been

plotted with respect to the time. The computation time is 2.04 s for the stable solution and 2.06 s for the unstable

one.

C. Boost converter with current-mode control

Consider the boost DC–DC converter in Fig. 6 under current-mode control with slope compensation. Because of

the presence of a memory element, that is the flip-flop, it is opportune to formalize the current-mode control problem

in the discrete-time domain. A corresponding block diagram is shown in Fig. 16, where eσ1
is the reference current

value, eσ2
is the external compensation ramp, eσ3

is the clock signal that is 1 for one sample at the beginning of

the period, i.e., k = 1 and it is zero for k = 2, 3, . . . , Nh. The behaviour of the S-R flip-flop can be modeled by
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Fig. 16. Block diagram of the current-mode controller: eσ1
is the reference signal for the output variable y, that is a current; eσ2

is the
compensation ramp; eσ3

is the clock; σ is the switching signal.

using the following function

σk = 1− (1− eσ3,k)sat[0,1](1− σk−1 + step(λσ,k)) (46a)

λσ,k = xo1,k − eσ1,k + eσ2,k (46b)

where sat[0,1] is the saturation function between zero and one and step is the unitary amplitude step function,

that we have already analyzed in Section III-B, see Fig. 3(b). For k = 1, the clock value eσ3,k, is set to 1 and

from (46a) the control signal σ is set to 1 independently on the value of the current (switch ON). The switch

stays ON, i.e., σ keeps the value 1, until the current xo1,k = yk reaches the compensation ramp eσ1,k − eσ2,k for

some value of k. At this value of k, λσ,k becomes nonnegative and the output of the step function changes from

0 to 1. After that the control variable σ is zero, i.e., the switch is OFF until the beginning of the next period

also in the case λσ,k changes again its sign. By replacing in (46a) the saturation and the step function with the

corresponding complementarity representation, we obtain the complementarity model of the control signal in the

case of current-mode control

σk = 1− (1 − eσ3,k)zσ2,k (47a)

wσ1,k = −zσ2,k + 1 (47b)

wσ2,k = zσ1,k + zσ2,k − zσ3,k − 1 + σk−1 (47c)

wσ3,k = zσ4,k − λσ,k (47d)

wσ4,k = −zσ3,k + 1 (47e)

0 ! wσ,k ⊥ zσ,k " 0, (47f)

where λσ,k is given in (46b). By discretizing the open-loop LC model of the power converter in (19) and by

considering (47) and the periodicity condition, the closed-loop discretized LC model in the form of (35) can be

easily obtained. Consider the following parametersR1 = 0 Ω, R2 = 22 Ω, C1 = 880 µF, L1 = 69 µH, imax = 10 A,

eo = 16.9 V, eσ1
= 12.58 A and eσ2

is the compensation ramp with slope equal to 8.4× 105 As−1 and frequency

1/Tc = 100 kHz. Figure 17 shows the steady-state results obtained by applying the LC procedure. The results are

coherent with the experimental results presented in [4].
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Fig. 17. Steady-state inductor current xo1 and capacitor voltage xo2 (continuous line) computed by using the LC procedure for the closed-loop
boost DC–DC converter with current-mode control.
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Fig. 18. Buck DC–DC converter.

D. Buck converter with period doubling bifurcation

Consider the buck DC–DC converter shown in Fig. 18 with a voltage-mode PWM and a proportional controller

whose scheme is in Fig. 7 where y = k1xo1 + k2xo2 , eσ1
is the reference output voltage and the integral term is

zero, i.e., ki = 0. In [29] it is shown that this power converter presents different kinds of bifurcations, under the

variation of the input voltage eo and the frequency of the carrier signal eσ2
. When the following parameters are

chosen R1 = 22 Ω, C1 = 47 µF, L1 = 5.8 mH, kp = 1, k1 = 0.02, k2 = 2, imax = 5 A, eo = 20 V, eσ1
= 8 V

and eσ2
is a sawtooth signal with a frequency 1/Tc = 1.013 kHz and whose amplitude varies between 2.4 V and

8 V, the buck DC–DC converter has a period doubling bifurcation. By using the procedure described in Section III,

i.e., by appling the Kirchhoff laws to the circuit in Fig. 18 and by using (4), (7) and (22), the LC model of the
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Fig. 19. Carrier signal eσ2
(dotted line) and modulation signals for stable double-period solution (continuous line) and single-periodic unstable

solution (dashed line) for the closed-loop buck DC–DC converter.

closed-loop power converter can be written as follows

ẋo1 = −
1

L1
xo1 −

1

L1
xo2 +

1

L
zd (48a)

ẋo2 =
1

C1
xo1 −

1

C1R1
xo2 (48b)

wd = xo1 − zc1 (48c)

wc1 = zd + zc2 − eo (48d)

wc2 = −zc1 + imaxzσ1
(48e)

wσ1
= kpxo2 + zσ2

− kpeσ1
+ eσ2

(48f)

wσ2
= −zσ1

+ 1 (48g)

0 ! w ⊥ z " 0 (48h)

which is in the form (17) with x = col(xo1 , xo2), z = col(zd, zc1 , zc2 , zσ1
, zσ2

), w = col(wd, wc1 , wc2 , wσ1
, wσ2

)

and e = col(eo, eσ1
, eσ2

, 1). The converter has an unstable solution with the same period of the sawtooth and a

stable steady-state solution with double-period, that is T = 2Tc.

By discretizing the system with Nh = 350 samples ( h = 5.6 µs for the unstable solution and h = 2.8 µs for

the stable one) and by constructing the mixed LC problem (1) with the matrices defined in (30), (36) and (42), the

PATH algorithm with zero and nonzero initial guesses provides the solutions shown in Fig. 19 and Fig. 20.

Figure 21 shows the comparison between the numerical results obtained with the complementarity procedure and

the experimental results presented in [29] and confirms the effectiveness of the proposed approach. In the same

figure, with the dash-dotted line we present also the solution characterized by sliding motion obtained by setting
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Fig. 20. Phase plane corresponding to the different solutions of the closed-loop buck DC–DC converter in Fig. 19: unstable (dashed line) and
stable (continuous line). Note the presence of multiple discontinuous conduction mode phases during the double-periodic solution.
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Fig. 21. Comparison with experimental results (dots) for the closed-loop buck DC–DC converter: carrier signal eσ2
(dotted line) and simulation

solution (continuous line). Numerical solution with sliding motion (dot-dashed line) obtained with different control parameters.

the value of the reference voltage eσ1
= 12 V and the control parameters k1 = 0.01 and k2 = 1.05.

VII. CONCLUSIONS

Linear complementarity (LC) systems are an interesting class of models suitable for the representation of the

dynamic evolutions of power converters. One of the major drawbacks of the LC models previously proposed in

the literature for power converters was the presence of switched sets (cones) required for the representation of the

switches characteristics. That made very complicated the construction of complementarity models for controlled

converters. The LC model proposed in this paper for the voltage–current piecewise linear characteristics of switches



29

allows to represent power converters as non-switched LC systems. The LC model structure with constant matrices

is valid for both open-loop and closed-loop power converters, and it can be obtained by combining the dynamical

equations describing the circuit with the LC representations of the electronic devices, modulator and controller.

The LC model can be used for the time-stepping evolution and for the steady-state oscillation computations. In

particular, the steady-state solution of the discretized closed-loop system has been formulated as the solution of

a static mixed LC problem. The proposed technique has been shown to be effective for the computation of the

transient and the steady-state periodic oscillations exhibited by closed-loop Z-source, boost and buck DC–DC power

converters operating in continuous or discontinuous conduction mode and also in the presence of multiple solutions.

Future work will be dedicated to improve the numerical effectiveness of the LC model integration, to the order

model reduction issue within the complementarity framework and to the application of the proposed technique for

the analysis of more complex nonlinear phenomenon in switched circuits.
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