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Abstract This paper studies the interaction between the notions of passivity of sys-
tems theory and complementarity of mathematical programming in the context of
complementarity systems. These systems consist of a dynamical system (given in the
form of state space representation) and complementarity relations. We study existence,
uniqueness, and nature of solutions for this system class under a passivity assumption
on the dynamical part. A complete characterization of the initial states and the inputs
for which a solution exists is given. These initial states are called consistent states. For
the inconsistent states, we introduce a solution concept in the framework of distribu-
tions.

1 Introduction

Complementarity theory is one of the extensively explored areas of mathematical pro-
gramming (see the excellent survey of [17]). The classical complementarity problem has
two main actors: two variables that satisfy the so-called complementarity conditions
and that are related through an algebraic relation. In various areas of engineering as well
as operations research, however, one encounters mathematical models (see e.g [35, 36]
for an account of examples) in which complementarity conditions are accompanied
with di↵erential-algebraic relations instead of purely algebraic. Looking with systems
theory glasses, we call such models complementarity systems.

M.K. Camlibel
Dept. of Mathematics, University of Groningen, P.O. Box 800, 9700 AV Groningen, The
Netherlands and Dept. of Electronics and Communication Eng., Dogus University, Aciba-
dem 34722, Kadikoy-Istanbul, Turkey
E-mail: m.k.camlibel@rug.nl

L. Iannelli
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Specific examples of complementarity systems have already been studied in many
di↵erent fields. In particular, mechanics deserves to be mentioned with its vast litera-
ture on models employing complementarity methods extensively. A systematic study
of system-theoretical properties of complementarity systems, however, was initiated
by papers [33, 34]. Since then, related research has been growing in many directions.
To give a quick (and inevitably incomplete) overview of the numerous works (see the
surveys [1,20]), we mention [2,8,13,19,22,24] for well-posedness, [38] for nature of solu-
tions, [10] for modelling issues, [22] for simulation, [4] for equivalent classes, [3,9,11,12]
for controllability, [14] for stabilizability, [15] for observability, and [16] for stability.
Also the works [18,30,31,39] on di↵erential variational inequalities and [2] on stability
of monotone multivalued mappings are closely related to this line of research.

Besides complementarity, the notion of passivity is among main ingredients of this
paper. Having its roots in circuit theory, passivity has always been a central concept
in systems theory. Passive systems satisfy an abstract energy balance inequality: the
stored energy at a time instant cannot exceed the sum of the stored energy at a previous
time instant and the energy supplied to the system between these two time instants.
Such a conceptualization of passivity was first introduced by Jan Willems [42]. A
detailed account on passivity and related notions in systems and control can be found
in [6].

The current paper deals with the complementarity systems for which the underlying
dynamical system is linear and passive. We study existence, uniqueness, and nature
of solutions for this class. These were already the subject of previous work [10, 13,
21, 22]. However, all these references make a number of simplifying assumptions that
do not hold in many practical applications. Without these assumptions, the line of
thought of [10,13,21,22] breaks down in an irreparable way. By developing a completely
di↵erent line of argumentation, this paper gives a full characterization of existence and
uniqueness issues for linear passive complementarity systems.

The structure of the paper is as follows. In the next section, we introduce notational
conventions. A brief review of the linear complementarity problem and linear passive
systems is also given. Section 3 introduces cone complementarity systems and gives
a detailed account on already available literature. It also discusses the restrictiveness
of the earlier assumptions and illustrates, by means of examples, that some of these
assumptions do not hold in various practical problems. The main results are presented
in Section 4. The paper closes with the conclusions in Section 5. Some very basic facts
of quadratic programming and geometric control theory are included in Appendix A
and B for the sake of completeness.

2 Preliminaries

The two main ingredients of this paper are the linear complementarity problem of
mathematical programming and the passivity concept of systems theory. For the sake of
completeness, these notions will be reviewed in what follows. We begin with notational
conventions.
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2.1 Notation

Sets, vectors, and matrices.

The set of real numbers is denoted by R, nonnegative real numbers by R+, and complex
numbers by C.

Let x be a complex vector. Its transpose is denoted by xT and its conjugate trans-
pose by x⇤. The same notations are used also for matrices. We write x ? y if xT y = 0.

Let x be an n-vector and ↵ ✓ {1, 2, . . . , n} be an index set. The vector x
↵

denotes
the components of x indexed by ↵.

Let M be a matrix. Its image is denoted by imM = {y | y = Mx for some x} and
its kernel by kerM = {x | Mx = 0}. A square matrix M , not necessarily symmetric,
is called nonnegative definite if xTMx > 0 for all x. It is called positive definite if it is
nonnegative definite and xTMx = 0 implies that x = 0.

Sometimes, we do not indicate the dimensions of vectors and matrices explicitly. In
such cases, their dimensions are such that all the expressions that they appear make
sense.

Inequalities.

All inequalities involving a vector are understood componentwise. We say that a se-
quence of real numbers is lexicographically nonnegative if all elements are zero or
the first nonzero element is positive. A sequence of real vectors (x1, x2, . . .) is lexico-
graphically nonnegative if the real number sequences (x1

i

, x2
i

, . . .) is lexicographically
nonnegative for all possible indices i. To denote a lexicographically nonnegative se-
quence (x1, x2, . . .), we write (x1, x2, . . .) < 0.

Cones and dual cones.

A set is called a cone if any nonnegative multiple of each element belongs to it. A set
S is called polyhedral if S = {x | Ax > b} for a matrix A and a vector b. The notation
pos(M), where M is a matrix, denotes the cone {Mx | x > 0}.

For a non-empty set S, not necessarily a cone, we define its dual cone as {x | xT y >
0 for all y 2 S} and denote this set by S⇤.

Functions.

Let f : R ! Rn be a function. We write f(t) ⌘ 0 meaning that f(t) = 0 for all t.
When it exists, its i-th derivative is denoted by f (i). Sometimes, we write ḟ for its first
derivative. The left limit of f at a point T is denoted by lim

t"T f(t).

The Laplace transform of a vector-valued function f is denoted by f̂(s).
The exponential function of a matrix M is denoted by t 7! exp(Mt), i.e. exp(Mt) =P1

i=0 M
iti/i!.

The notation O(x) : R 7! R denotes a function for which there exist a positive real
number c and a real number x̄ such that O(x) 6 cx for all x > x̄.

Rational functions.

Let f be a rational function, i.e. f = p/q for some polynomials p and q. We say that
f is a rational function with a degree n when the di↵erence between the degrees of p
and q equals to n. When the degree of p is less than or equal to that of q, we say that
f is proper. When the degree of p is less than that of q, f is said to be strictly proper.
Note that the degree of a proper rational function is always nonpositive and that of a
strictly proper rational function is always negative.
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We say f(�) > 0 for all su�ciently large real numbers � meaning that there exists
a real number �̄ such that f(�) > 0 whenever � > �̄.

System-theoretical notions.

Consider a linear state-space system

ẋ(t) = Ax(t) +Bz(t) (1a)

w(t) = Cx(t) +Dz(t) (1b)

where the state x takes values from Rn and the external variables (z, w) from Rm⇥Rp.
We define the controllability subspace imB+imAB+ · · ·+imAn�1B. If this subspace
is the entire Rn, we say that the system (1) (or (A,B)) is controllable. We define the
unobservability subspace as kerC \ kerCA \ · · · \ kerCAn�1. When this subspace
consists of only the zero vector, we say that the system (1) (or (C,A)) is observable.
When the system (or (A,B,C)) is both controllable and observable, it is called minimal.

Associated to such a system, we define the transfer matrix as the complex-valued
rational function s 7! D + C(sI �A)�1B.

2.2 Linear complementarity problem

Given an m-vector q and an m ⇥ m matrix M , the linear complementarity problem
LCP(q,M) is to find an m-vector z such that

z > 0 (2a)

q +Mz > 0 (2b)

zT (q +Mz) = 0. (2c)

If such a vector z exists, we say that z solves (is a solution of ) LCP(q,M). We say
that the LCP(q,M) is feasible if there exists z satisfying (2a) and (2b).

The LCP is a well-studied subject of mathematical programming [17]. For the sake
of completeness, we quote the following two theorems. The first one can be considered as
the fundamental theorem of the LCP theory. It states necessary and su�cient conditions
for the unique solvability of the LCP for all vectors q.

Theorem 1 (Thm. 3.3.7 of [17]) The LCP(q,M) has a unique solution for all q if,

and only if, all the principal minors of the matrix M are positive.

Matrices with the above-mentioned property are known as P -matrices. It is well-known
that every positive definite matrix is in this class. Besides positive definite matrices,
the nonnegative definite matrices will appear in the LCP context in the sequel. If the
M matrix is nonnegative definite then the LCP does not necessarily have solutions for
all vectors q. For example, the LCP(q, 0) admits solutions only if q > 0.

In the rest of the paper, we will often refer to the solution set of LCP(0,M) which
will be denoted by

Q
M

= {z | z > 0, Mz > 0, and zTMz = 0}. (3)

The following theorem characterizes the conditions under which an LCP with a non-
negative definite matrix M has solutions.
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Theorem 2 (Cor. 3.8.10 of [17]) Let M be a nonnegative definite matrix. Then,

the following statements are equivalent.

1. q 2 Q⇤
M

.

2. LCP(q,M) is feasible.

3. LCP(q,M) is solvable.

When M is (not necessarily symmetric) a nonnegative definite matrix, the set Q
M

is a convex cone and can be given by Q
M

= {z | z > 0 and (M +MT )z = 0}.

2.3 Linear passive systems

Having roots in circuit theory, passivity is a concept that has always played a central
role in systems theory. A system is passive if for any time interval the di↵erence between
the stored energy at the end of the interval and at the beginning is less than or equal
to the supplied energy during the interval.

Definition 1 [42] A linear system ⌃(A,B,C,D) given by

ẋ(t) = Ax(t) +Bz(t) (4a)

w(t) = Cx(t) +Dz(t) (4b)

is called passive if there exists a nonnegative function V : Rn ! R+ such that for all
t0 6 t1 and all trajectories (z, x, w) of the system (4) the following inequality holds:

V (x(t0)) +

Z
t1

t0

zT (t)w(t) dt > V (x(t1)). (5)

If it exists the function V is called a storage function.

Passivity property can be characterized in terms of the state space representation or
the transfer matrix of the system as follows.

Proposition 1 Consider the following statements:

1. The system ⌃(A,B,C,D) is passive

2. The linear matrix inequalities

K = KT > 0 and


ATK +KA KB � CT

BTK � C �(D +DT )

�
6 0 (6)

have a solution K.

3. The function V (x) = 1
2x

TKx defines a storage function.

4. The transfer matrix G(s) = D + C(sI � A)�1B is positive real, i.e., u⇤[G(�) +
G⇤(�)]u > 0 for all complex vectors u and all complex numbers � such that Re(�) >
0 and � is not an eigenvalue of A.

5. The triple (A,B,C) is minimal.

6. The pair (C,A) is observable.

7. The matrix K is positive definite.

The following implications hold:

i. 1 , 2 , 3.
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ii. 2 ) 4.

iii. 4 and 5 ) 2.

iv. 2 and 6 ) 7.

Proof. The implications i, ii and iii are consequences of the well-known Kalman-
Yakubovich-Popov lemma (see e.g. [6]). To see that the implication iv holds, let x̄ be
such that x̄TKx̄ = 0. Since K is symmetric and nonnegative definite, we get Kx̄ = 0.
Note that x̄T (ATK +KA)x̄ = 0. Since �(ATK +KA) is symmetric and, due to the
LMI (6), nonnegative definite, we get (ATK + KA)x̄ = KAx̄ = 0. This means that
A kerK ✓ kerK, i.e. kerK is an A-invariant subspace. Note also that passivity implies
that


x̄

↵u

�
T


ATK +KA KB � CT

BTK � C �(D +DT )

� 
x̄

↵u

�
= �2↵uTCx̄� ↵2uT (D +DT )u 6 0. (7)

for all ↵ and u. If Cx̄ 6= 0, one can choose ↵ and u such that this inequality is violated.
Therefore, Cx̄ = 0. This means that kerK ✓ kerC. As the unobservability subspace
kerC\kerCA\· · ·\kerCAn�1 is the largest A-invariant subspace that contains kerC,
we get kerK ✓ kerC \ kerCA \ · · · \ kerCAn�1. Since the system is observable, the
right hand of this inclusion is the trivial subspace {0}, hence K is positive definite. ⌅

Passivity imposes a strong structure on the system. The following lemma collects
some of the consequences of passivity that will be used often in the paper.

Lemma 1 Suppose that the system ⌃(A,B,C,D) is passive. Let K be any solution to

the LMIs (6) and let G(s) = D+C(sI�A)�1B. Then, the following statements hold.

i. D is nonnegative definite.

ii. ūT (D +DT )ū = 0 ) CT ū = KBū.

iii. ker


CT

D +DT

�
= ker


KB

D +DT

�

iv. ūT (D +DT )ū = 0 ) ūTCBū = ūTBTKBū > 0.
v. x̄T (ATK +KA)x̄ = 0 ) Cx̄ = BTKx̄.

vi. A kerK ✓ kerK.

vii. kerK ✓ kerC \ kerCA \ · · · \ kerCAn�1
.

viii. ū 2 kerKB ) G(s)ū = Dū for all complex numbers s.

ix. ker
⇥
G(�) +GT (�)

⇤
= ker


KB

D +DT

�
for all real positive numbers � that are not

eigenvalues of A.

Proof. i: This immediately follows from the LMIs (6).

ii: Let ū be such that ūT (D +DT )ū = 0. Note that

0 >

x̄

↵ū

�
T


ATK +KA KB � CT

BTK � C �(D +DT )

� 
x̄

↵ū

�
= x̄T (ATK+KA)x̄+2↵x̄T (KB�CT )ū.

(8)
Since ↵ and x̄ are arbitrary, the right hand side can be made positive unless (KB �
CT )ū = 0.
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iii-iv: These assertions readily follow from ii.

v: Let x̄ be such that x̄T (ATK +KA)x̄ = 0. Note that

0 >

x̄

↵ū

�
T


ATK +KA KB � CT

BTK � C �(D +DT )

� 
x̄

↵ū

�
= 2↵x̄T (KB�CT )ū+ūT (D+DT )ū. (9)

Since ↵ and ū are arbitrary, the right hand side can be made positive unless x̄T (KB�
CT ) = 0.

vi and vii: See the proof of the implication iv of Proposition 1.

viii: If ū 2 kerKB then Bū must belong to kerK which is contained in the unob-
servability subspace kerC\kerCA\· · ·\kerCAn�1. This means that C(sI�A)�1Bū ⌘
0.

ix: Let � be a real positive number that is not an eigenvalue of A.
Let ū be such that KBū = 0 and (D +DT )ū = 0. Due to viii, one has ūT [G(�) +

GT (�)]ū = 0. Since G(s) is positive real, one gets [G(�) + GT (�)]ū = 0. This means
that

ker[G(�) +GT (�)] ◆ ker


KB

D +DT

�
. (10)

To show the reverse inclusion, let ū 2 ker[G(�) + GT (�)] and define x̄ = (�I �
A)�1Bū. Note that

Ax̄+Bū = �x̄ (11)

and


x̄

ū

�
T


ATK +KA KB � CT

BTK � C �(D +DT )

� 
x̄

ū

�

= (Ax̄+Bū)TKx̄+ x̄TK(Ax̄+Bū)� ūT [G(�) +GT (�)]ū (12)

(11)
= 2�x̄TKx̄. (13)

The LMIs (6) imply that x̄TKx̄ = 0. Since K is nonnegative definite, Kx̄ = 0. It
follows from (11) and vi that KBū = 0. Note that

0 = ūT [G(�) +GT (�)]ū (14)

= ūT (D +DT )ū (15)

due to viii. Consequently,

ker
⇥
G(�) +GT (�)

⇤
✓ ker


KB

D +DT

�
. (16)

⌅

The following lemma will serve as a bridge between the complementarity methods
and passive systems.
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Lemma 2 Suppose that the system ⌃(A,B,C,D) is passive. Let G(s) = D + C(sI �
A)�1B. Then, Q⇤

G(�) = Q⇤
D

+ imC for all positive numbers � not being an eigenvalue

of A.

Proof. We begin by claiming that

Q
G(�) = Q

D

\ kerCT . (17)

To see this, let ū 2 Q
G(�) for some positive real number � not being an eigenvalue of

A. This means

0 6 ū ? G(�)ū > 0 (18a)

Passivity implies nonnegative definiteness of G(�) due to Proposition 1. Then, it follows
from (18) that ū 2 ker[G(�) + GT (�)]. Lemma 1 ix and viii yield that G(�)ū = Dū.
This, together with (18), means that ū 2 Q

D

. By Lemma 1 ix and iii, we have already
ū 2 kerCT . Thus, we get Q

G(�) ✓ Q
D

\ kerCT . To see that the reverse inclusion

holds, let ū 2 Q
D

\ kerCT . Hence,

ū > 0 (19a)

Dū > 0 (19b)

ūTDū = 0 (19c)

CT ū = 0. (19d)

Since D is nonnegative definite due to Lemma 1 i, we get ū 2 ker(D +DT ) \ kerCT .
Lemma 1 iii and viii imply that Dū = G(�)ū. This, together with (19), means that
ū 2 Q

G(�). Therefore, QG(�) ◆ Q
D

\ kerCT . So far we proved the relation (17). At
this point, we invoke two basic facts about closed convex cones:

1. (X ⇤)⇤ = X if X is a polyhedral cone (see [40, Thm. 2.7.7]).
2. X ⇤ \ Y⇤ = (X + Y)⇤ if X and Y are cones.

Applying these to (17), we get Q⇤
G(�) = Q⇤

D

+ imC. ⌅

3 Linear cone complementarity systems

Consider the system

ẋ(t) = Ax(t) +Bz(t) + Eu(t) (20a)

w(t) = Cx(t) +Dz(t) + Fu(t) (20b)

C 3 z(t) ? w(t) 2 C⇤ (20c)

where the state x takes values from Rn, the input u from Rk, the complementarity vari-
ables (z, w) from Rm+m, and C ✓ Rm is a polyhedral cone. We call these systems linear
cone complementarity systems and denote (20) by LCCS(A,B,C,D,E, F ). In case C =
Rm

+ , we get a linear complementarity system which is denoted by LCS(A,B,C,D,E, F ).
When the sextuple (A,B,C,D,E, F ) is clear from the context, we use only LCCS or
LCS.
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Well-posedness of LCCS (20) with a passive1 quadruple (A,B,C,D) was studied
by [10, 22] without external inputs and, respectively, for the cases C = Rm

+ and C is a
Cartesian product of any combination of the cones {0}, R+, and R. The papers [13,21]
generalize these results to the LCCS with external inputs. All these earlier works
assume that

A1. The triple (A,B,C) is minimal, and
A2. the matrix col(B,D +DT ) is of full column rank.

In this paper, we are interested in dropping these two assumptions which are hard to
motivate from practical point of view. Next, we briefly discuss why these assumptions
are restrictive.

The external variables z and w correspond to, respectively, inputs and outputs in
the context of control theory. For control problems, controllability and observability
are rather natural assumptions. Even further, weaker forms of these notions, called
stabilizability and detectability (see e.g. [41] for more details), are necessary condi-
tions for the most, if not all, control problems. However, the variables z and w play
a completely di↵erent role in the context of complementarity systems. As such, it is
hard to motivate controllability and/or observability assumptions in this context. Fur-
thermore, minimality of the triple (A,B,C) is employed only to guarantee the positive
definiteness of the storage function in the earlier papers [10, 13, 21, 22]. In this paper,
we drop the assumption A1 and work under the weaker assumption that the storage
function is positive definite.

It turns out that the second assumption is even harder to motivate. In many practi-
cal problems, the number of complementarity pairs is greater than the number of states
(i.e. m > n). As such, assumption A2 cannot be met at all. Two of such examples are
in order. The first one is from circuit theory.

Example 1 Consider the diode-bridge circuit depicted in Figure 1.

L

R1

-
x1

u

6

iD1

vD1

6

iD4

iD3 iD2

vD3

vD4

vD2

66

+��✏�
�

+

�

+

�

+

�

+

�

C

x2 R2

+

�

Fig. 1 Power converter diode bridge.

1 See also [5,7] for ‘passive-like’ systems with the property that KB = C

T for some positive
definite matrix K.
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By extracting the ideal diodes and using Kirchho↵ laws, one can derive the gov-
erning circuit equations as


ẋ1
ẋ2

�
=


�R1

L

0
0 � 1

R2C

� 
x1
x2

�
+


0 1

L

� 1
L

0
1
C

0 0 1
C

�
2

664

i
D1

v
D2

v
D3

i
D4

3

775+


1
L

0

�
u (21a)

2

664

v
D1

i
D2

i
D3

v
D4

3

775 =

2

664

0 1
1 0
�1 0
0 1

3

775


x1
x2

�
+

2

664

0 0 �1 0
0 0 0 1
1 0 0 0
0 �1 0 0

3

775

2

664

i
D1

v
D2

v
D3

i
D4

3

775 . (21b)

Here x1 is the current through the inductor L, x2 is the voltage across the capacitor C
and (v

Di
, i

Di
) is the voltage-current pair associated to the i-the diode. Characteristics

of ideal diodes can be given in forms of complementarity conditions as

0 6 v
Di

? i
Di

> 0 for all i = 1, 2, 3, 4. (21c)

In this way, we obtain a linear complementarity system of the form (20) where C = R4
+.

Note that D + DT = 0 and B is a matrix having more columns than rows. As such,
the assumption A2 cannot be met. It can be verified that a solution to the LMIs (6) is
given by

K =


L 0
0 C

�
. (22)

The second example comes from optimization.

Example 2 Many models for network usage can be described in terms of users who have
access to several resources. The use of a given resource generates a cost for the user,
for instance in terms of incurred delay. This cost depends in general on the load that is
placed in the resource by all users. Suppose that we have p users and n resources. Let
`
i,j

(t) denote the load per unit of time placed by user i on resource j at time t, q
i,j

(t)
denote the cost incurred at time t by user i when applying to resource j, d

i

(t) denote
the total demand of user i at time t and a

i

(t) denote the cost accepted by user i at time
t. Also let L(t) 2 Rp⇥n with L

ij

(t) = `
i,j

(t) be the load matrix, Q(t) 2 Rp⇥n with
Q

ij

(t) = q
i,j

(t) be the cost matrix, d(t) 2 Rp be the demand vector, and a(t) 2 Rp be
the accepted cost vector. Then, we have the total load relation

L(t)e
n

= d(t) (23)

where e
n

is an n-vector such that all elements are equal to 1. Introduce a state vec-
tor x(t) 2 Rn in terms of which the dynamics of the system is described and which
moreover determines the cost matrix, for instance as follows:

ẋ(t) = LT (t)e
p

(24a)

Q(t) = e
p

(Kx(t))T � a(t)(e
n

)T (24b)

where K 2 Rn⇥n is a symmetric positive definite matrix. As a way to describe the
behavior of users, assume that the Wardrop principle holds at every time instant t. This
behavioral principle, together with the nonnegativity of the load, can be expressed in
matrix terms by

0 6 L(t) ? Q(t)� a(t)(e
n

)T > 0 (24c)
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where the inequalities hold componentwise and the ? relation is understood in the
sense of the inner product hX,Y i = tr(XTY ) where X,Y 2 Rp⇥n. Denote the matrix
Q(t)� a(t)(e

n

)T by Q̄(t).
Now, define

z(t) = col((L1•(t))
T , (L2•(t))

T , . . . , (L
p•(t))

T , a(t)) (25)

w(t) = col((Q̄1•(t))
T , (Q̄2•(t))

T , . . . , (Q̄
p•(t))

T , d(t)). (26)

With these definitions, one can rewrite (24a) and (24b) as

ẋ = Bz (27a)

w = BTKx+Dz (27b)

where B 2 Rn⇥n(p+1) and D 2 Rn(p+1)⇥n(p+1) with D +DT = 0. As B is a matrix
having more columns than rows, the assumption A2 cannot be met. It is immediate
that K is the unique solution to the the LMIs (6).

A key consequence of the assumptions A1 and A2 is that the transfer matrix G(�) =
D + C(�I � A)�1B satisfies ker[G(�) + GT (�)] = {0} due to Proposition 1.iv and
Lemma 1.ix. As it is already positive real, this means that G(�) is positive definite for
all su�ciently large real positive numbers �. This property is the central idea behind
the methods and arguments used in [10, 13, 21, 22]. To drop the assumption A2, one
needs to take a completely new line of arguments.

4 Main results

The main goal of the paper is to establish existence and uniqueness conditions under
the passivity assumption. This will be achieved in two steps. First, we find conditions
under which ‘local’ solutions exist. In the next step, it will be shown that the ‘local’
solutions can be extended to the whole time axis. To do so, we need some nomenclature.

4.1 Bohl functions and distributions

A function f : R+ ! Rp is said to be a Bohl function if f(t) = Z exp(Xt)Y holds for
all t > 0 and for some matrices X, Y , and Z with appropriate sizes. These functions
appear as the solutions of linear and constant coe�cient di↵erential equations. If f is a
Bohl function, its one-sided Laplace transform can be given by f̂(s) = Z(sI �X)�1Y .
Note that f̂ is rational and strictly proper. Conversely, the inverse Laplace transform
of a rational and strictly proper function is a Bohl function.

We say that a Bohl function f initially lies in the cone C if there exists a positive
number ✏ such that f(t) 2 C for all t 2 [0, ✏). Let the cone C be a polyhedral cone and the
matrix M be such that C = {⇠ 2 Rp | M⇠ > 0}. Since f is a real-analytic function, it
initially lies in the cone C if, and only if, the sequence (Mf(0),Mf (1)(0),Mf (2)(0), . . .)
is lexicographically nonnegative.

A distributional framework is needed to capture the sudden changes that are caused
by the inconsistent initial states and/or input functions. Instead of working in the
general framework of distributions, we focus on a subclass, namely to the distributions
that are supported on a single point. A classical result [37, p. 100, Theorem XXXV]
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states that these distributions are linear combinations of the Dirac distribution and
its derivatives. We say that f is an impulsive distribution at t if f =

P
`

i=0 ci�
(i)
t

for
some integer ` and real vectors c

i

2 Rp. Here, �
t

denotes the Dirac distribution that is

supported at t, �
(i)
t

the i-th derivative of �
t

. By convention, �
(0)
t

= �
t

. Note that the

Laplace transform of f =
P

`

i=0 ci�
(i)
0 can be given as f̂(s) = c

`

s` + c
`�1s

`�1 + · · · +
c1s+ c0.

Let the cone C be a polyhedral cone and the matrix M be such that C = {⇠ 2
Rp | M⇠ > 0}. We say that an impulsive distribution at t = 0, say f =

P
`

i=0 ci�
(i)
0 ,

initially lies in the cone C if the finite vector sequence (Mc
`

,Mc
`�1, . . . ,Mc1,Mc0) is

lexicographically nonnegative.

A distribution f is said to be a Bohl distribution if it is the sum of an impulsive
distribution at t = 0 and a Bohl function. In this case, we denote the impulsive part by
fimp and the rest, i.e. ‘regular’ part, by freg. We say that a Bohl distribution initially

lies in the cone C if one of the following conditions hold:

– fimp 6= 0 and fimp initially lies in the cone C, or
– fimp = 0 and freg initially lies in the cone C.

We say that a Bohl distribution is of order 0 if it has no impulsive part and of

order n if its impulsive part is given by
P

n�1
i=0 c

i

�
(i)
0 with c

n�1 6= 0.

Another characterization of this property can be given in terms of the Laplace
transform as follows.

Lemma 3 Let C be a polyhedral cone. A Bohl distribution f initially lies in the cone

C if, and only if, f̂(�) 2 C for all su�ciently large � 2 R.

Proof. If fimp = 0 then the assertion follows from the initial value theorem of the
Laplace transform [26]. The rest follows from the fact that if fimp 6= 0 then its Laplace

transform can be written as f̂(s) = c
`

s`+f̂rest(s) where c
`

6= 0 and f̂rest(s) is a rational
function with a degree less than `. ⌅

4.2 Initial solutions

We say that a triple of Bohl distributions (z, x, w) is an initial solution of the LCCS (20)
for the initial state x0 and the Bohl input u if there exists an index set ↵ ✓ {1, 2, . . . ,m}
such that the equations

ẋ = Ax+Bz + Eu+ x0�0 (28a)

w = Cx+Dz + Fu (28b)

w
↵

= 0 and z
↵

c = 0 (28c)

hold in the sense of distributions and (z, w) initially lies in C ⇥ C⇤. Here ↵c is the
complement of the set ↵ in {1, 2, . . . ,m}. The solutions without having any impulsive
part (i.e. (zimp, ximp, wimp) = 0) are of particular interest. In this case, we say that
the initial solution (z, x, w) is regular.
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For the moment, we focus on the linear complementarity system, i.e. we take C =
Rm

+ . Note that C⇤ = (Rm

+ )⇤ = Rm

+ . Consider the linear complementarity system

ẋ(t) = Ax(t) +Bz(t) + Eu(t) (29a)

w(t) = Cx(t) +Dz(t) + Fu(t) (29b)

0 6 z(t) ? w(t) > 0. (29c)

We claim that if a triple (z, x, w) is an initial solution for the initial state x0 and
the input u then its Laplace transform satisfies

x̂(s) = (sI �A)�1x0 + (sI �A)�1Eû(s) + (sI �A)�1Bẑ(s) (30a)

ŵ(s) = C(sI �A)�1x0 + [F + C(sI �A)�1E]û(s) + [D + C(sI �A)�1B]ẑ(s)
(30b)

ẑT (s)ŵ(s) = 0 for all complex numbers s (30c)

(ẑ(�), ŵ(�)) > 0 for all su�ciently large real numbers �. (30d)

To see this, note that (30a)-(30c) readily follow from (28) whereas (30d) follows from
the fact that both z and w initially lie in the cone Rm

+ and Lemma 3.
Conversely, suppose that there exists a rational function ẑ(s) such that the relations

(30b)-(30d) are satisfied. In this case, we claim that the inverse Laplace transform of
the triple (ẑ(s), x̂(s), ŵ(s)) is an initial solution for the initial state x0 and the input
u where x̂(s) is given by (30a). To see this, let the inverse transform be (z, x, w).
Obviously, (28a) and (28b) are satisfied by (z, x, w). Lemma 3, together with (30d),
implies that both z and w initially lie in Rm

+ . Then, it remains to prove that (28c) is
satisfied for an index set ↵. Note that this would follow if we show

i. either ẑ
i

(s) ⌘ 0
ii. or ŵ

i

(s) ⌘ 0

for each index i. It follows from (30d) that for each i, ẑ
i

(�)ŵ
i

(�) > 0 for all su�ciently
large �. Then, it follows from (30c) that for each i, ẑ

i

(�)ŵ
i

(�) = 0 for all su�ciently
large �. Since both z and w are rational functions, one can conclude that at least one
of the statements i or ii must hold.

This correspondence leads us to study complementarity problems of the form (30).

4.3 Rational complementarity problem

Given an m-tuple of rational functions q̂(s) and an m⇥m matrix of rational functions
M(s), the rational complementarity problem RCP(q̂(s),M(s)) is to find an m-tuple of
rational functions ẑ(s) such that

ŵ(s) = q̂(s) +M(s)ẑ(s) (31a)

ẑT (s)ŵ(s) = 0 for all complex numbers s (31b)

(ẑ(�), ŵ(�)) > 0 for all su�ciently large real numbers �. (31c)

If such a vector ẑ(s) exists, we say that ẑ(s) solves (is a solution of ) RCP(q̂(s),M(s)).
The RCP has been introduced in [24] and further studied in [23]. The following theorem,
which is the backbone of the well-posedness theory of linear complementarity systems,
relates the solvability of an RCP to the solvability of a corresponding sequence of LCPs.
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Theorem 3 [23, Thm. 4.1 and 4.9] The following statements hold.

1. The RCP(q̂(s),M(s)) has a solution if, and only if, the LCP(q̂(�),M(�)) has a

solution for all su�ciently large real numbers �.

2. The RCP(q̂(s),M(s)) has a unique solution if, and only if, the LCP(q̂(�),M(�))
has a unique solution for all su�ciently large real numbers �.

4.4 Existence of initial solutions

Establishing necessary and su�cient conditions for the existence of initial solutions,
the following theorem will be the base of the subsequent development.

Theorem 4 Consider the LCS (29) such that the system ⌃(A,B,C,D) is passive. Let
T
u

(s) = F + C(sI � A)�1E and T
z

(s) = D + C(sI � A)�1B. For given initial state

x0 and Bohl input u, define q̂(s) = C(sI � A)�1x0 + T
u

(s)û(s). Then, the following

statements hold.

1. The following statements are equivalent.

(a) The LCS (29) has an initial solution for the initial state x0 and the Bohl-type

input u.

(b) The RCP(q̂(s), T
z

(s)) has a solution.

(c) The RCP(q̂(s), T
z

(s)) has a proper solution.

(d) The function Fu initially lies in the cone Q⇤
D

+ imC.

2. The following statements are equivalent.

(a) The LCS (29) has a regular initial solution for the initial state x0 and the

Bohl-type input u.

(b) The RCP(q̂(s), T
z

(s)) has a strictly proper solution.

(c) The function Fu initially lies in the cone Q⇤
D

+ imC and Cx0 + Fu(0) 2 Q⇤
D

.

3. If the LCS (29) admits two initial solutions (z1, x1, w1) and (z2, x2, w2) for the

initial state x0 and the Bohl-type input u then

(a) z1 � z2 2 ker


KB

D +DT

�
.

(b) Kx1 = Kx2.

(c) w1 � w2 2 D ker


KB

D +DT

�

To prove this theorem, we need three auxiliary lemmas. The first one is self-evident.

Lemma 4 If a real vector sequence (a1, a2, a3) is lexicographically nonnegative then

(⇢a1+ a2, a3) is also lexicographically nonnegative for all su�ciently large positive real

numbers ⇢.

The second lemma gives conditions under which existence of a solution leads to
existence of a lesser degree solution.

Lemma 5 Let N be a positive integer and let ẑ(s) = z
N

sN + z
N�1s

N�1 + ẑrest(s)
where ẑrest is a rational function with a degree less than N � 1. Suppose that ẑ(s) is

a solution of the RCP(q̂(s), T
z

(s)). Then, z
N

2 ker


KB

D +DT

�
and ẑnew(s) := (µz

N

+

z
N�1)s

N�1+ ẑrest(s) is also a solution of the RCP(q̂(s), T
z

(s)) for all su�ciently large

nonnegative µ.
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Proof. Note that

ŵ(s) = q̂(s) + T
z

(s)ẑ(s) (32)

= q̂(s) + [D + C(sI �A)�1B][z
N

sN + z
N�1s

N�1 + ẑrest(s)]. (33)

Since q̂(s) is strictly proper and N is a positive integer, it follows from ẑT (s)ŵ(s) ⌘ 0
that

zT
N

Dz
N

= 0 (34)

zT
N

Dz
N�1 + zT

N

CBz
N

+ zT
N�1Dz

N

= 0. (35)

Since D is nonnegative definite due to passivity, (34) implies z
N

2 ker(D + DT ).
Along with (35), this means that zT

N

CBz
N

= 0. Due to Lemma 1.iv, one gets z
N

2

ker


KB

D +DT

�
. To prove the rest, it is necessary to show that

ŵnew(s) := q̂(s) + T
z

(s)ẑnew(s) (36a)

ẑTnew(s)ŵnew(s) = 0 for all complex numbers s (36b)

(ẑnew(�), ŵnew(�)) > 0 for all su�ciently large real numbers �. (36c)

Note that

ẑ(s) = z
N

sN + z
N�1s

N�1 + ẑrest(s) (37a)

ẑnew(s) = (µz
N

+ z
N�1)s

N�1 + ẑrest(s). (37b)

Hence, one can conclude from Lemma 4 that ẑnew(�) > 0 for all su�ciently large �

and su�ciently large µ. Since z
N

2 ker


KB

D +DT

�
, it follows from Lemma 1.viii that

T
z

(s)z
N

= Dz
N

. This results in

ŵ(s) = q̂(s) + T
z

(s)ẑ(s) (38a)

= Dz
N

sN + T
z

(s)z
N�1s

N�1 + q̂(s) + T
z

(s)ẑrest(s) (38b)

ŵnew(s) = q̂(s) + T
z

(s)ẑnew(s) (38c)

= µDz
N

sN�1 + T
z

(s)z
N�1s

N�1 + q̂(s) + T
z

(s)ẑrest(s). (38d)

As ẑ(s) is a solution of the RCP(q̂(s), T
z

(s)) and q̂(s) + T
z

(s)ẑrest(s) is a rational
function with a degree less than N � 1, we arrive at the conclusion that ŵnew(�) > 0
for all su�ciently large positive real numbers � by applying Lemmas 3 and 4 to (38b).
So far, we showed that the relation (36c) holds. To see that the relation (36b) holds, note
that for each index i either ẑ

i

(s) ⌘ 0 or ŵ
i

(s) ⌘ 0. This readily results in (ẑnew(s))
i

⌘ 0
via (37) when ẑ

i

(s) ⌘ 0. Likewise, ŵ
i

(s) ⌘ 0 implies (ŵnew(s))
i

⌘ 0. To see this, note
that ŵ

i

(s) ⌘ 0 implies (q̂(s)+T
z

(s)ẑrest(s)+T
z

(s)z
N�1s

N�1)
i

⌘ 0 and (Dz
N

)
i

= 0 as
the former is degree of at most N � 1. Therefore, one gets ẑTnew(s)ŵnew(s) = 0. Thus,
ẑnew(s) is a solution to RCP(q̂(s), T

z

(s)). ⌅

The third lemma presents conditions under which existence of a strictly proper
solution can be concluded from that of a proper solution.
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Lemma 6 Let ẑ(s) = z0 + ẑrest(s) where ẑrest is a strictly proper rational function.

Suppose that ẑ(s) is a solution of the RCP(q̂(s), T
z

(s)) and z0 2 ker


KB

D +DT

�
. Then,

ẑnew(s) := µz0s
�1+ẑrest(s) is also a solution of the RCP(q̂(s), T

z

(s)) for all su�ciently

large µ.

Proof. We need to show that

ŵnew(s) := q̂(s) + T
z

(s)ẑnew(s) (39a)

ẑTnew(s)ŵnew(s) = 0 for all complex numbers s (39b)

(ẑnew(�), ŵnew(�)) > 0 for all su�ciently large real numbers �. (39c)

Note that

ẑ(s) = z0 + ẑrest(s) (40a)

ẑnew(s) = µz0s
�1 + ẑrest(s). (40b)

Hence, one can conclude from Lemma 4 that ẑnew(�) > 0 for all su�ciently large �

and su�ciently large µ. Since z0 2 ker


KB

D +DT

�
, it follows from Lemma 1.viii that

T
z

(s)z
N

= Dz
N

. This results in

ŵ(s) = q̂(s) + T
z

(s)ẑ(s) (41a)

= Dz0 + q̂(s) + T
z

(s)ẑrest(s) (41b)

ŵnew(s) = q̂(s) + T
z

(s)ẑnew(s) (41c)

= µDz0s
�1 + q̂(s) + T

z

(s)ẑrest(s). (41d)

As ẑ(s) is a solution of the RCP(q̂(s), T
z

(s)) and q̂(s)+T
z

(s)ẑrest(s) is strictly proper,
we arrive at the conclusion that ŵnew(�) > 0 for all su�ciently large positive real
numbers � by applying Lemma 4 to (41b). So far, we showed that the relation (39c)
holds. To see the relation (39b) holds, note that for each index i either ẑ

i

(s) ⌘ 0 or
ŵ
i

(s) ⌘ 0. This readily results in (ẑnew(s))
i

⌘ 0 via (40) when ẑ
i

(s) ⌘ 0. Likewise,
ŵ
i

(s) ⌘ 0 implies (ŵnew(s))
i

⌘ 0. To see this, note that ŵ
i

(s) ⌘ 0 implies (q̂(s) +
T
z

(s)ẑrest(s))
i

⌘ 0 and (Dz0)
i

= 0 as the former is strictly proper. Therefore, one gets
ẑTnew(s)ŵnew(s) = 0. Thus, ẑnew(s) is a solution to RCP(q̂(s), T

z

(s)). ⌅

Proof of Theorem 4.

1a , 1b: This is evident from the discussion in Section 4.2.

1b , 1c: Obviously, 1c implies 1b. For the converse, let N > 1 and ẑ(s) =
z
N

sN + z
N�1s

N�1 + ẑrest(s), where ẑrest is a rational function with a degree less
than N � 1, be a solution of RCP(q̂(s), T

z

(s)). By repeatedly applying Lemma 5, one
obtains a proper solution.

1c , 1d: It follows from Theorems 3 and 2 that the RCP(q̂(s), T
z

(s)) has a solution
if and only if q̂(�) 2 Q⇤

Tz(�)
for all su�ciently large real numbers �. We know from

Lemma 2 that Q⇤
Tz(�)

= Q⇤
D

+ imC. Note that p + r 2 Q⇤
D

+ imC with p 2 imC if



17

and only if r 2 Q⇤
D

+ imC. This means that q̂(�) = C(�I � A)�1x0 + [F + C(�I �
A)�1E]û(�) 2 Q⇤

D

for all su�ciently large real numbers � if and only if the same holds
for F û(�) 2 Q⇤

D

+ imC. The latter holds if and only if Fu initially lies in the cone
Q⇤

D

+ imC due to Lemma 3.

2a , 2b: This is evident from the discussion in Section 4.2.

2b ) 2c: Since RCP(q̂(s), T
z

(s)) is solvable, it follows from the statement 1 that
Fu initially lies in the cone Q⇤

D

+imC. For the rest, let ẑ(s) = z�1s
�1+ ẑrest(s), where

ẑrest is a rational function with a degree less than �1, be a strictly proper solution of
RCP(q̂(s), T

z

(s)). The relations (31) result in

z�1 > 0 (42)

Cx0 + Fu(0) +Dz�1 > 0 (43)

z�1 ? Cx0 + Fu(0) +Dz�1. (44)

In other words, z�1 solves the LCP(Cx0+Fu(0), D). Due to Theorem 2, Cx0+Fu(0) 2
Q⇤

D

.

2c ) 2b: Suppose that Fu initially lies in the cone Q⇤
D

+ imC and Cx0 +Fu(0) 2
Q⇤

D

. The former relation, along with the statement 1, means that the RCP(q̂(s), T
z

(s))
has a proper solution, i.e. there exists a proper rational function ẑ(s) such that

ẑ(�) > 0 (45a)

ŵ(�) = q̂(�) + T
z

(�)ẑ(�) > 0 (45b)

for all su�ciently large real numbers � and

ẑT (s)ŵ(s) = 0 (45c)

for all complex numbers s. Since Cx0 + Fu(0) 2 Q⇤
D

, there must exist a vector z̄ such
that

z̄ > 0 (46a)

w̄ = Cx0 + Fu(0) +Dz̄ > 0 (46b)

z̄T (Cx0 + Fu(0) +Dz̄) = 0. (46c)

Straightforward algebraic manipulations yield

z̄��1 > 0 (47a)

w̄��1 = (Cx0 + Fu(0))��1 � C(�I �A)�1Bz̄��1 + T
z

(�)z̄��1 > 0 (47b)

(z̄��1)T [(Cx0 + Fu(0))��1 � C(�I �A)�1Bz̄��1 + T
z

(�)z̄��1] = 0 (47c)

for all positive numbers �. By using (45) and (47), one gets

(ẑ(�)� z̄��1)T (ŵ(�)� w̄��1) 6 0. (48)

This results in

(ẑ(�)� z̄��1)TT
z

(�)(ẑ(�)� z̄��1)

6 �(ẑ(�)� z̄��1)T [q̂(�)� (Cx0 + Fu(0))��1 + C(�I �A)�1Bz̄��1]
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for all su�ciently large real numbers �. Note that the right hand side of this inequality
is of order ��2. Let ẑ(s) = z0 + ẑrest(s) where ẑrest(s) is a strictly proper rational
function. Then, the last inequality can be rewritten as

zT0 Dz0 + (zT0 Dz�1 + zT�1Dz0 � z̄TDz0 � zT0 Dz̄ + zT0 CBz0)�
�1 +O(��2) 6 O(��2).

(49)
By taking the limit as � tends to infinity, one gets

zT0 Dz0 = 0 (50)

since D is nonnegative definite due to the hypotheses. By multiplying by � both sides
and taking the limit as � tends to infinity, one gets

zT0 Dz�1 + zT�1Dz0 � z̄TDz0 � zT0 Dz̄ + zT0 CBz0 = 0. (51)

Together with (50), this results in zT0 CBz0 = 0. Hence, z0 2 ker


KB

D +DT

�
due to

Lemma 1 statement iv. Now, one can invoke Lemma 6 and get a strictly proper solu-
tion.

3a: It follows from complementarity that (ẑ1(�)� ẑ2(�))T (ŵ1(�)� ŵ2(�)) 6 0 for
all su�ciently large real numbers �. Note that ŵ1(�)�ŵ2(�) = T

z

(�)((ẑ1(�)� ẑ2(�))).
Hence, we get

(ẑ1(�)� ẑ2(�))TT
z

(�)(ẑ1(�)� ẑ2(�)) 6 0 (52)

for all su�ciently large real numbers �. Since T
z

(s) is positive real due to Proposition 1,
one further gets

(ẑ1(�)� ẑ2(�))TT
z

(�)(ẑ1(�)� ẑ2(�)) = 0 (53)

and hence (T
z

(�) + TT

z

(�))(ẑ1(�) � ẑ2(�)) = 0 for all su�ciently large real numbers
�. It follows from Lemma 1.ix that

ẑ1(�)� ẑ2(�) 2 ker


KB

D +DT

�
(54)

for all su�ciently large real numbers � that are not eigenvalues of A. Since the left
hand side is a rational function of �, one gets

ẑ1(s)� ẑ2(s) 2 ker


KB

D +DT

�
. (55)

3b: Note that x̂1(s)� x̂2(s) ⌘ B(ẑ1(s)� ẑ2(s)). By left multiplying and using the
statement 3a, one gets K(x̂1 � x̂2) ⌘ 0.

3c: Note that ŵ1(s)� ŵ2(s) = C(x̂1(s)� x̂2(s))+D(ẑ1(s)� ẑ2(s)). It follows from
the statement 3b and Lemma 1.vii that C(x̂1(s) � x̂2(s)) ⌘ 0. The rest follows from
statement 3a. ⌅
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Remark 1 Note that

Q
G(�) = Q

D

\ kerCT ✓ ker


CT

D +DT

�
= ker


KB

D +DT

�
.

As such, the assumptions A1 and A2 guarantee that

ker


KB

D +DT

�
= {0}.

Consequently, Q
G(�) = {0} and Q⇤

G(�) = Rm. Hence, all results on the initial solutions
of linear passive complementarity systems [8, 10, 13, 19, 21, 22] can be recovered from
Theorem 4 as special cases.

Next, we show that the x-trajectories of regular initial solutions are Lipschitz con-
tinuous.

Theorem 5 Consider the LCS (29) such that the system ⌃(A,B,C,D) is passive.

Suppose that the LMIs (6) have a positive definite solution. Let (z, x, w) be a regular

initial solution of the LCS (29) for some initial state and the Bohl input u. Let ↵ ✓
{1, 2, . . . ,m} and " > 0 be such that

w
↵

(t) = 0 and z
↵

c(t) = 0 for all t 2 R+ (56)

z
↵

(t) > 0 and w
↵

c(t) > 0 for all t 2 [0, "). (57)

Then, there exist some matrices K
x

and K
u

that depend only on the input u, the

matrices (A,B,C,D,E, F ) and ↵ such that

ẋ(t) = (A+B•↵Kx

)x(t) + (ER+B•↵Ku

)ePtQ (58)

where u(t) = RePtQ.

Proof. By the hypotheses, one has

ẋ(t) = Ax(t) +B•↵z↵(t) + Eu(t) (59a)

0 = C
↵•x(t) +D

↵↵

z
↵

(t) + F
↵•u(t) (59b)

for all t 2 R+. Since u is a Bohl function, there exist matrices P 2 R`⇥`, Q 2 R`⇥1,
and R 2 Rk⇥` such that u(t) = RePtQ for all t. By defining ū(t) = ePtQ, ⇠ = col(x, ū),
and ⇣ = z

↵

, one can rewrite (59) as

⇠̇(t) = A⇠(t) + B⇣(t) (60a)

0 = C⇠(t) +D⇣(t) (60b)

for all t 2 R+ where

A =


A ER

0 P

�
, B =


B•↵
0

�
(61a)

C =
⇥
C
↵• F

↵•R
⇤
, D = D

↵↵

. (61b)

Let V⇤ be the largest output-nulling controlled-invariant subspace for the linear
system given by (A,B, C,D) as defined in Appendix B.
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It follows from (60) and Theorem 12 that ⇠(0) = col(x(0), ū(0)) 2 V⇤ and ⇣ = L⇠+v

where L 2 L and v is an integrable function with v(t) 2 ker D̄\ B̄�1V⇤ for all t 2 R+.
Hence, z

↵

= ⇣ = K
x

x+K
u

ū+ v for some matrices K
x

and K
u

. Then, (59) and (60)
yield

ẋ(t) = (A+B•↵Kx

)x(t) + (ER+B•↵Ku

)ū(t) +B•↵v(t) (62a)

0 = (C
↵• +D

↵↵

K
x

)x(t) + (F
↵•R+D

↵↵

K
u

)ū(t). (62b)

Now, consider the di↵erential equation

˙̃
⇠ = A⇠̃(t) + B⇣̃(t) (63a)

where ⇠̃(0) = ⇠(0) = col(x(0), ū(0)) 2 V⇤. It follows from Theorem 12 that

0 = C⇠̃(t) +D⇣̃(t) (63b)

if we choose ⇣̃ = L⇠̃. From (61a), (63a), and ⇠̃(0) = ⇠(0) = col(x(0), ū(0)), we can
conclude that ⇠̃ = col(x̃, ū). Then, it follows from (63) that

˙̃x(t) = (A+B•↵Kx

)x̃(t) + (ER+B•↵Ku

)ū(t) (64a)

0 = (C
↵• +D

↵↵

K
x

)x̃(t) + (F
↵•R+D

↵↵

K
u

)ū(t) (64b)

with the initial condition x̃(0) = x(0). Define x̂ = x� x̃ and ẑ = K
x

x̂. By subtracting
(64) from (62) and using the property v 2 kerD

↵↵

for all t 2 R+, we obtain

˙̂x = Ax̂+B•↵(v + ẑ) (65a)

0 = C
↵•x̂+D

↵↵

(v + ẑ). (65b)

It follows from Proposition 1 that the linear system ⌃(A,B•↵, C↵•, D↵↵

) is passive
with any storage function of the system ⌃(A,B,C,D). Therefore, we can apply the
dissipation inequality (5) and obtain

x̂T (t)Kx̂(t) 6 x̂T (0)Kx̂(0) (66)

for all t 2 R+ where K is any positive definite solution of the LMIs (6). Since x̂(0) = 0
by definition, it follows from positive definiteness of K that x̂(t) = 0 for all t 2 R+.
Hence, (65a) implies that

0 = B•↵(v̄(t) + ẑ(t)) = B•↵(v(t) +K
x

x̂(t)) = B•↵v(t) (67)

for almost all t 2 R+. Further, we get B•↵z↵ = B•↵(Kx

x +K
u

ū + v) = B•↵(Kx

x +
K

u

ū). Then, (58) follows from (59). ⌅
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4.5 Global solutions

In the previous section, we established existence and uniqueness results on the ini-
tial solution concept. By definition, this is a ‘local’ notion of solution that describes
the behavior of the system on a short interval of time. Next, we show that one can
concatenate these initial solutions in order to construct a global solution.

Let T be a positive number. We say that a triple (z, x, w), where x is absolutely
continuous and (z, w) is locally integrable,

– is a solution of (20) on [0, T ) for the initial state x0 and the input u if x(0) = x0
and (20) is satisfied almost everywhere on [0, T ).

– is a forward solution of (20) on [0, T ) for the initial state x0 and the input u if
(z, x, w) is a solution on [0, T ) and for each t̄ 2 [0, T ) there exist ✏

t̄

> 0 and an
index set ↵(t̄) ✓ {1, 2, . . . ,m} such that

ẋ(t) = Ax(t) +Bz(t) + Eu(t) (68a)

w(t) = Cx(t) +Dz(t) + Fu(t) (68b)

z
↵(t̄)(t) > 0 w

↵(t̄)(t) = 0 (68c)

z
↵

c(t̄)(t) = 0 w
↵

c(t̄)(t) > 0 (68d)

holds for all t 2 (t̄, t̄ + ✏). Here ↵c denotes the complement of the set ↵ in
{1, 2, . . . ,m}.

Remark 2 Suppose that D is a nonnegative matrix. For existence of solutions on an
interval [0, T ) for an input u, the relation

Fu(t) 2 Q⇤
D

+ imC for almost all t 2 [0, T ) (69)

is a necessary condition. To see this, let the triple (z, x, w) be a solution on [0, T ) for
some initial state and the input u, then the relation

0 6 z(t) ? Cx(t) +Dz(t) + Fu(t) > 0 (70)

holds for almost all t 2 [0, T ). This would mean that the LCP(Cx(t) + Fu(t), D) is
solvable for almost all t 2 [0, T ). In view of Theorem 2, (70) holds if and only if
Cx(t) + Fu(t) 2 Q⇤

D

holds for almost all t 2 [0, T ). Clearly, this implies (69).

Remark 3 Suppose that the linear system ⌃(A,B,C,D) is passive and the LMIs (6)
have a positive definite solution K. Let the triples (zi, xi, wi) with i = 1, 2 be two
solutions of the system (20) on [0, T ) for the same initial state and the input. Note
that (z1 � z2, x1 � x2, w1 � w2) is a trajectory of the linear system ⌃(A,B,C,D) for
the zero initial state and (z1(t)� z2(t))T (w1(t)� w2(t)) 6 0 for almost all t 2 [0, T ).
Then, the dissipation inequality (5) results in

(x1(t)� x2(t))TK(x1(t)� x2(t)) 6 0 (71)

for all t. This means that x1 = x2 since K is positive definite. Hence, the dissipation
inequality (5) implies that x1(t) = x2(t) for all t 2 [0, T ), i.e. passivity with a positive
definite storage function immediately implies uniqueness of x-trajectories.
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Remark 4 Note that if (z, x, w) is a regular initial solution for some initial state and
input then it is a forward solution for the same initial state and input on [0, ✏̄) where ✏̄ :=
sup{✏ | (z(t), w(t)) > 0 for all t 2 [0, ✏)}. For ease of reference, we define ✓(z, x, w) = ✏̄

for any regular initial solution (z, x, w).

Remark 5 Consider the LCS (29) such that the system ⌃(A,B,C,D) is passive. Let u
be an input satisfying (69) and x̄0 be an initial solution satisfying Cx̄0 +Fu(0) 2 Q⇤

D

.
Existence of a regular initial state, say (z0, x0, w0), for the initial state x0 and the input
u follows from Theorem 4.2. Let ✏0 := ✓(z0, x0, w0). Then, (z0, x0, w0) is a forward
solution for the same initial state and input on [0, ✏0) due to Remark 4. Further,

Cx0(t) + Fu(t) 2 Q⇤
D

(72)

for all t 2 [0, ✏0). Since x0 is a Bohl function, the limit lim
t"✏0 x

0(t) exists and equals
to x̄1 := x0(✏0). As u is a Bohl function and Q⇤

D

is closed, (72) results in Cx̄1 +
Fu(✏0) 2 Q⇤

D

. Then, it follows from Theorem 4.2 that there must exist an initial
solution, say (z1, x1, w1), for the initial state x̄1 and the input t 7! u(t + ✏0). Define
✏1 := ✓(z1, x1, w1). It is easy to see that the concatenation

(z, x, w)(t) =

(
(z0, x0, w0)(t) if t < ✏0

(z1, x1, w1)(t� ✏0) if ✏0 6 t 6 ✏0 + ✏1
(73)

is a forward solution on [0, ✏0+✏1). One can extend this solution by repeating the same
argument. This process produces the following three cases:

1. For some integer i, ✏
i

is not finite: Clearly, the above process yields a solution on
every interval [0, T ).

2. For all integers i, ✏
i

is finite and
P1

i=0 ✏i diverges: In this case, there exists an

integer j such that
P

j

i=0 ✏i > T for any T > 0. As such, repetition of the above
process yields a solution on every interval [0, T ).

3. For all integers i, ✏
i

is finite and
P1

i=0 ✏i = T ⇤: In this case, one can obtain a
solution on the interval [0, T ⇤). To extend this a solution beyond T ⇤, it is enough
to show that the limit of the state trajectory at T ⇤ exists. In the earlier work
[10, 13, 21, 22], this was achieved by the uniqueness of the initial solutions that is
guaranteed by the assumption A2. In absence of this assumption, this limit does
not a priori exist. Below we show that the mentioned limit exists in case the LMIs
(6) admit a positive definite solution.

Theorem 6 Consider the LCS (29) such that the system ⌃(A,B,C,D) is passive.

Suppose that the LMIs (6) have a positive definite solution. Let T be a positive number

and let the Bohl-type input u satisfy (69). Suppose that there exists a forward solution

on [0, T ) for an initial state and the input u. Then, for some positive number ✏ there

exists a forward solution on [0, T + ✏) for the same initial state and input.

Proof. Let (z, x, w) be a forward solution on [0, T ). Due to the complementarity rela-
tions (29b)-(29c) and Theorem 2, one gets

Cx(t) + Fu(t) 2 Q⇤
D

(74)

for all t 2 [0, T ). Due to the definition of regular initial solutions and Theorem 5, for

each t̄ 2 [0, T ) there must exist "
t̄

> 0, ↵(t̄) ✓ {1, 2, . . . ,m}, K↵(t̄)
x

, and K
↵(t̄)
u

such
that

ẋ(t) = [A+B•↵(t̄)K
↵(t̄)
x

]x(t) + [ER+B•↵(t̄)K
↵(t̄)
u

]ePtQ (75)



23

for all t 2 (t̄, t̄+"
t̄

) where u(t) = RePtQ. Therefore, we can conclude that x is Lipschitz
continuous and hence uniformly continuous on [0, T ). As such, x⇤ := lim

t!T

x(t) exists
(see e.g. [32, Ex. 4.13]. In view of (74) and (69), it follows from Theorem 4 that there
exists a regular initial solution for the initial state x⇤ and the input t 7! u(t� T ). By
concatenating (z, x, w) and this regular initial solution, we obtain a forward solution
on [0, T + ") for some " > 0. ⌅

Remark 6 Above theorem deals with the case that the underlying system admits a
positive definite storage function. It is possible to formulate a similar result for the
nonnegative definite case. In this case, however, the concatenation process must be
modified as concatenations of arbitrary initial solutions may not be extended arbitrarily
in general. To prevent this, one should choose an initial solution among all possible ones
in such a way that the existence of the state trajectory lying in kerK is guaranteed.

Theorem 7 Consider the LCS (29) such that the system ⌃(A,B,C,D) is passive.

Suppose that the LMIs (6) have a positive definite solution. Then, the following state-

ments are equivalent for a given positive real number T , an initial state x0, and an

input u.

1. There exists a solution for the initial state x0 and the input u on [0, T ).
2. There exists a forward solution for the initial state x0 and the input u on [0, T ).
3. The relations

Fu(t) 2 Q⇤
D

+ imC for all t 2 [0, T ) (76a)

Cx0 + Fu(0) 2 Q⇤
D

(76b)

hold.

Moreover, if (zi, xi, wi) i = 1, 2 are solutions with the initial state x0, and the input u,

then the relations

i. x1 � x2 = 0,

ii. z1 � z2 2 ker


B

D +DT

�
,

iii. w1 � w2 2 D ker


B

D +DT

�
.

hold.

Proof.

3 ) 2: Due to Theorem 4.2, there exists a regular initial solution, say (z, x, w).
Remark 4 implies that this initial solution is a forward solution on an interval [0, ✏)
where ✏ = ✓(z, x, w). By using Theorem 6 repeatedly, we can obtain a forward solution
on the interval [0, T ) for any T > 0.

2 ) 1: By definition, a forward solution is a solution.

1 ) 3: It follows from Remark 2 that

Fu(t) 2 Q⇤
D

+ imC (77)
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for almost all t 2 [0, T ). Since u is a Bohl function, the same relation must hold for all t
in the given interval. The condition (76b) follows from Theorem 2, (29b)-(29c) for t = 0.

i: Note that the triple (z1�z2, x1�x2, w1�w2) is a trajectory of the linear system
(4) with the zero initial state. Note also that (z1(t) � z2(t))T (w1(t) � w2(t)) 6 0 for
all t due to the complementarity relations (29c). Then, the dissipation inequality (5)
results in

(x1(t)� x2(t))TK(x1(t)� x2(t)) 6 0 (78)

for all t. This means that x1 = x2 since K is positive definite.

ii: Since x1 = x2, we get

0 = B(z1 � z2) (79a)

w1 � w2 = D(z1 � z2). (79b)

Clearly, z1�z2 2 kerB. Due to complementarity, we know that (z1(t)�z2(t))T (w1(t)�
w2(t)) 6 0 for all t. By left-multiplying (79b) by (z1(t)� z2(t))T , one gets

(z1(t)� z2(t))TD(z1(t)� z2(t)) 6 0. (80)

Since D is nonnegative definite, this holds only if (D +DT )(z1 � z2) = 0.

iii: This readily follows from statement ii and the relation (79b). ⌅

Remark 7 Complementarity systems are examples of the so-called hybrid systems (see
e.g. [1,20]). Very roughly speaking, a hybrid system consists of a collection of dynamical
systems and a set of transition rules (see e.g. [35] for more details). At any given
time instant, the behavior of a hybrid system is determined by one of the associated
dynamical systems. Transition rules determine when and how the active system is going
to be replaced by another. The time instants for which such a transition occurs are
called event times. An interesting phenomenon that might occur is the accumulation
of event times. This phenomenon called Zeno behavior in hybrid systems terminology
(see e.g. [43]). It turns out that finding conditions under which hybrid systems do not
exhibit Zeno behavior is rather a hard task. In the context of complementarity systems,
absence of Zeno behavior is shown in [38] when D is a P -matrix. A detailed discussion
of Zeno behavior is beyond the scope of this paper. Speaking very loosely, however,
Theorem 7 rules out left accumulation of event times as it proves that for any solution
there exists a corresponding forward solution. Moreover, right accumulation of event
times can also be ruled out when D is a positive definite matrix by reversing the time
and rendering the time-reversed system passive by shifting its poles (see [13] for more
details).

4.6 Inconsistent initial states

The condition (76b) characterizes the set of initial states from which a ‘smooth’ con-
tinuation is possible. Such initial states are sometimes, for instance in circuit theory
literature, called consistent initial states. One way of treating inconsistent initial states,
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i.e. states that do not satisfy (76b), is to introduce a jump in the state variable. Roughly
speaking, this corresponds to, in physical systems, modeling very fast changes as if they
happen instantaneously. The following theorem paves the road to introduce a jump rule
in terms of the energy stored in the system.

Theorem 8 Consider the LCS (29) such that the system ⌃(A,B,C,D) is passive.

Let K be a solution of the LMIs (6) and N be such that Q
D

= pos(N). Let x0 2 Rn

and w0 2 Rm

. Suppose that the set {x | Cx + w0 2 Q⇤
D

} is not empty. Consider the

following problems:

⇢
minimize (x� x0)

TK(x� x0)
subject to Cx+ w0 2 Q⇤

D

�
(MP1)

⇢
minimize xTKx+ 2wT

0 Nv

subject to v > 0 and Kx = Kx0 +KBNv

�
(MP2)

⇢
minimize vTNTCBNv + 2(Cx0 + w0)

TNv

subject to v > 0

�
(MP3)

8
<

:

v > 0

NT (Cx0 + w0) +NTCBNv > 0

vT (NT (Cx0 + w0) +NTCBNv) = 0

9
=

; (LCP )

8
<

:

z 2 Q
D

Cx0 + w0 + CBz 2 Q⇤
D

zT (Cx0 + w0 + CBz) = 0

9
=

; . (GLCP )

The following statements hold:

1. The problem (MP1) always admits a solution.

2. If a vector x̄ solves (MP1) then there exists v̄ such that the pair (x̄, v̄) solves (MP2).
3. If a pair of vectors (x̄, v̄) solves (MP2) then the vector v̄ solves (MP3).
4. If a vector v̄ solves (MP3) then there exists x̄ such that the pair (x̄, v̄) solves (MP2).
5. If a pair of vectors (x̄, v̄) solves (MP2) then there exists x̂ with Kx̂ = Kx̄ such that

x̂ solves (MP1).
6. A vector v̄ solves (MP3) if, and only if, it solves the linear complementarity problem

(LCP ).
7. A vector v̄ solves the linear complementarity problem (LCP ) if, and only if, z̄ = Nv̄

solves the generalized linear complementarity problem (GLCP ).

Proof.

1: This follows from Frank-Wolfe theorem (see e.g. [17, Thm. 2.8.1]).

2: Take Q = 2K, b = �2Kx0, A = 2NTC, and c = �2NTw0. Apply Theorem 11.2
by using Lemma 1.ii.

3: Clearly,
Kx̄ = K(x0 +BNv̄). (81)
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Due to Lemma 1.ii, KBNv = CTNv for all v > 0 since Nv 2 Q
D

✓ (D +DT ) for all
v > 0. Then, it follows from (81) that

x̄TKx̄ = (x0 +BNv̄)TK(x0 +BNv̄) (82a)

= v̄TNTCBNv̄ + 2(Cx0)
TNv̄ + xT0 Kx0. (82b)

Consequently, v̄ solves (MP3).
4: Take any x̄ satisfying (81). It follows from (82b) that the pair (x̄, v̄) solves

(MP2).
5: Take Q = 2K, b = �2Kx0, A = 2NTC, and c = �2NTw0. Apply Theorem 11.3

by using Lemma 1.ii.

6: This follows from Q
D

= pos(N) and Theorem 11.1.

7: This immediately follows from Q
D

= pos(N). ⌅

This theorem shows that the problems (MP1), (MP2), (MP3), (LCP ), and (GLCP )
are equivalent in a sense. Note that the last three of these do not depend on the storage
function K. When K is positive definite, the minimization problem (MP1) admits a
unique solution.

We define the jump in accordance with this problem. Speaking in terms of the stored
energy, our jump rule says that the initial state jumps to a state that is consistent and
that is the closest state to the initial state in the metric defined by the stored energy.

Note that if the initial state x0 is consistent, then the unique solution x = x0. If
the initial state is inconsistent, we take the solution of the problem (MP1) as the new
initial state. As it is consistent by definition, there exists a smooth continuation from
this re-initialized state.

The state jump rule given by (MP1) is very much akin to Jean-Jacques Moreau’s
principle of maximum dissipation (see [28, 29]) in the context of mechanical systems
with unilateral contacts and dry friction. Also the link between complementarity sys-
tems and the quadratic programming was studied by Moreau in [27].

Theorem 9 Consider an LCS (29) such that the system ⌃(A,B,C,D) is passive.

Suppose that the LMIs (6) have a positive definite solution. Let K be such a solution

of the LMIs (6). Also let T be a positive number and u be an input such that Fu(t) 2
Q⇤

D

+ imC for all t 2 [0, T ). For each initial state x0,

1. there exists a unique re-initialized state x+0 such that it solves the minimization

problem

minimize (x� x0)
TK(x� x0)

subject to Cx+ Fu(0) 2 Q⇤
D

2. there exists a forward solution (z, x, w) for the initial state x+0 and the input u on

[0, T ).

Proof. This follows from Theorems 7 and 8. ⌅
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4.7 Extension to cone complementarity systems

Up to now, we have focused on the linear complementarity systems of the form (29).
Clearly, these systems can be considered as a particular case of cone complementarity
systems (20) by taking C = Rm

+ . In this section, we extend the previous results on the
LCSs (29) to (20). The following two observations make this extension possible. The
first one is an equivalence relation between the LCCS (20) and a corresponding LCS
(29) of the form.

Lemma 7 Consider the LCCS (20). Let C be a polyhedral cone given by C = pos(M)
for some matrix M 2 Rm⇥m̄

. Then, the following statements hold:

1. If a triple (z, x, w) is a (forward) solution to LCCS(A,B,C,D,E, F ) then there

exist functions (z̄, w̄) with z = Mz̄ and w̄ = MTw such hat (z̄, x, w̄) is a (forward)

solution to LCS(A,BM,MTC,MTDM,E,MTF ).
2. If a (z̄, x, w̄) is a (forward) solution to LCS(A,BM,MTC,MTDM,E,MTF ) then

there exist functions (z, w) with z = Mz̄ and MTw = w̄ such that (z, x, w) is a

(forward) solution to LCCS(A,B,C,D,E, F ).

Proof. Note that if C = {Mz | z > 0} then C⇤ = {w | MTw > 0}. Then, the assertions
follow by considering the LCS

ẋ(t) = Ax(t) +BMz̄(t) + Eu(t) (83a)

w̄(t) = MTCx(t) +MTDMz̄(t) +MTFu(t) (83b)

0 6 z̄(t) ? w̄(t) > 0. (83c)

⌅

The second observation states that the mapping

(A,B,C,D) 7! (A,BM,MTC,MTDM)

preserves passivity.

Lemma 8 Consider the linear system ⌃(A,B,C,D). If K is a solution to the LMIs

(6) corresponding to ⌃(A,B,C,D) then so is to the LMIs (6) corresponding to ⌃(A,BM,MTC,MTDM).

Proof. This follows from the identity


ATK +KA KBM � CTM

MTBTK �MTC �MT (D +DT )M

�
=


I 0
0 M

�
T


ATK +KA KB � CT

BTK � C �(D +DT )

� 
I 0
0 M

�
.

⌅

Theorem 10 Consider an LCCS (29) such that the system ⌃(A,B,C,D) is passive

and the cone C is polyhedral given by C = pos(M) for some matrix M 2 Rm⇥m̄

.

Suppose that the LMIs (6) have a positive definite solution. Let K be such a solution

of the LMIs (6). Also let T be a positive number and u be an input. For each initial

state x0,
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1. there exists a unique re-initialized state x+0 that solves the minimization problem

minimize (x� x0)
TK(x� x0)

subject to MTCx+MTFu(0) 2 Q⇤
M

T
DM

2. there exists a forward solution (z, x, w) for the initial state x+0 and the input u on

[0, T ).

Proof. This follows from Theorem 9 and Lemmas 7 and 8. ⌅

5 Conclusions

We studied existence, uniqueness, and nature of solution of cone complementarity
systems for which the underlying dynamical system is linear and passive. Necessary
and su�cient conditions for existence and uniqueness of solutions are presented. We
also gave a complete characterization of initial states for which a solution exists. These
states are called consistent. For the inconsistent states, we introduced a distributional
solution concept. Similar results were already available under somewhat restrictive and
unnatural assumptions (see [10,13,21,22]). It turns out, however, that absence of these
assumptions makes it impossible to use similar methods to those employed in earlier
work and a completely new line of argumentation is needed. Another contribution is
that all presented results hold for polyhedral cones whereas only very specific types
of cones were investigated in the previous work. Extension of these results for more
general classes inputs are among the first issues for further research.

A Appendix: Quadratic programming

Theorem 11 Let Q be a symmetric nonnegative definite matrix. Consider the following three
quadratic programs

minimize
1

2
x

T
Qx+ b

T
x subject to x > 0 (QP1)

minimize
1

2
x

T
Qx+ b

T
x subject to Ax > c (QP2)

minimize
1

2
x

T
Qx� c

T
u subject to A

T
u�Qx = b and u > 0. (QP3)

The following statements hold.

1. Karush-Kuhn-Tucker conditions

x > 0

b+Qx > 0

x

T (b+Qx) = 0

are necessary and su�cient for the vector x to be globally optimal solution of the quadratic
program (QP1).

2. (Dorn’s duality theorem) [25, Thm. 8.2.4] If x̄ solves (QP2) then there exists ū such that
(x̄, ū) solves (QP3). Moreover, the two extrema are equal.

3. (Dorn’s converse duality theorem) [25, Thm. 8.2.6] If (x̄, ū) solves (QP3) then there exists
x̂ with Qx̂ = Qx̄ such that x̂ solves (QP2).
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B Appendix: Geometric control theory

Consider the linear system

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

where x 2 Rn, u 2 Rm, y 2 Rp, and all involved matrices are of appropriate dimensions. A
subspace V ✓ Rn is said to be an output-nulling controlled-invariant subspace if there exists
L 2 Rm⇥n such that

(A+BL)V ✓ V and (C +DL)V = {0}.

Since the set of all such subspaces are closed under subspace sum and intersection, there exists
a unique subspace V⇤ such that

V ✓ V⇤

holds whenever V is an output-nulling controlled invariant subspace. We call V⇤ the largest
output-nulling controlled invariant subspace and define

L = {L | (A+BL)V⇤ ✓ V⇤ and (C +DL)V⇤ = {0}}.

The following result (see e.g. [41, Thm. 7.11]) establishes a link between such subspaces and
the so-called zero dynamics of linear systems.

Theorem 12 The pair (u, x) satisfies the di↵erential algebraic equations

ẋ(t) = Ax(t) +Bu(t)

0 = Cx(t) +Du(t)

if and only if x(0) 2 V⇤ and the input u has the form u(t) = Lx(t) + v(t) where L 2 L and
v(t) 2 kerD \B

�1V⇤ for almost all t2.
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