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Averaging for switched DAEs
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Switched differential-algebraic equations (switched DAEs) E�(t)ẋ(t) = A�(t)x(t) are suitable for modeling many practical
systems, e.g. electrical circuits. When the switching is periodic and of high frequency, the question arises whether the solutions
of switched DAEs can be approximated by an average non-switching system. It is well known that for a quite general class
of switched ordinary differential equations (ODEs) this is the case. For switched DAEs, due the presence of the so-called
consistency projectors, it is possible that the limit of trajectories for faster and faster switching does not exist. Under certain
assumptions on the consistency projectors a result concerning the averaging for switched DAEs is presented.
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1 Introduction

The basic idea of averaging for switched systems is that for
sufficiently fast switching the solutions of the switched sys-
tem approach the solutions of a non-switched system—the
average system. In particular, if the switching is much faster
than the dynamics of each mode then this approach is suitable
to study system properties (e.g. stability, reference tracking)
of the switched system via the simpler average system. Ap-
plications of this approach can be found in pulse-width modu-
lation, sliding mode controllers or in general when fast digital
controllers are applied to a relatively slow physical system.
For a recent overview of the averaging technique see [1, 2].

For a switched linear ODE

ẋ(t) = A�(t)x(t), x(0) = x0 (1)

with periodic switching signal � : R ! {1, 2, . . . ,M} it is
easy to see that the following general averaging result holds.

Theorem 1.1 ( [3]) Let the average system be given by

ẋav = Aavxav, xav(0) = x0 (2)

with Aav := d1A1 + d2A2 + . . .+ dMAM where dk denotes

the duty cycle of the k-th mode, k 2 {1, . . . ,M}, i.e. dk is the

fraction of the period p > 0 of the switching signal for which

mode k is active. Then on every compact time interval [0, T ]:

kx(t)� xav(t)k = O(p).

where x and xav denotes the solutions of (1) and (2).
Modeling of electrical circuits yields switched differential-

algebraic equations (DAEs) [4]

E�(t)ẋ(t) = A�(t)x(t) (3)

and the question occurs whether the above averaging result
can be generalized to this system class. The following exam-
ple shows that this is not the case in general.

Example 1.2 (A counterexample) Consider the switched
DAE (3) with M = 2 and

(E1, A1) =
�
[ 0 0
0 1 ] ,

⇥
1 �1
0 �1

⇤�
, (E2, A2) =

�
[ 0 0
0 1 ] ,

⇥
1 0
0 �1

⇤�
.

The solutions are shown in Figure 1 and it is apparent that
the jumps induced by the switching prevents convergence to a
single trajectory for faster switching.
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Fig. 1: Counter example. Jumps are indicated by dashed lines.

For the forthcoming analysis of (3) we will assume that the
switching signal � is periodic with period p > 0. Our
goal is to study the solution behavior of the switched DAE
with decreasing switching period p but with constant duty cy-
cles d1, d2, . . . , dM > 0. Furthermore we assume that the
matrix pairs (Ek, Ak), k 2 {1, 2, . . . ,M}, are regular, i.e.
det(sEk �Ak) 6⌘ 0 and we assume that the switched system
is impulse free [5, 6] (that does not exclude jumps!). Under
these assumptions there exists unique consistency projectors
⇧k and flow matrices Adiff

k , k 2 {1, . . . ,M} such that the
solutions of the switched DAE have the form [7, 8]

x(t) = eA
diff
i (t�ti)⇧ie

Adiff
i�1(ti�ti�1)⇧i�1 · · ·

· · · eA
diff
2 (t3�t2)⇧2e

Adiff
1 (t2�t1)⇧1x(t1�).

where, tj , j = 1, 2, . . . , i, are the switching times in the inter-
val [0, t); for ease of notation we assumed a strictly increasing
mode sequence and identified j with j �M for j > M .

2 Avaraging result for switched DAEs

In our recent paper [9] we have established an averaging re-
sult for the case M = 2. The crucial additional assumption
we have to make is commutativity of the consistency projec-
tors. We were able to generalize this result to more than two
modes [10], but the proof methods are rather different and
more involved in the general case. However, the (pairwise)
commutativity of the consistency projectors remains the cru-
cial assumption:

8i, j 2 {1, . . . ,M} : ⇧i⇧j = ⇧j⇧i. (4)
Note that commutativity of the consistency projectors fol-
lows from the assumption that the flow matrices Adiff

k com-
mute [11]. Under this stronger assumption it is quite simple
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to prove the forthcoming averaging result for switched DAEs,
but we only assume the weaker condition (4) here. A crucial
consequence of (4) is the following result

Lemma 2.1 ( [10]) If (4) holds then

im⇧1⇧2 · · ·⇧M = im⇧1 \ im⇧2 \ . . .\ im⇧M

Because of the previous lemma it makes sense to introduce
the projector

⇧\ := ⇧1⇧2 · · ·⇧M

which projects onto the intersection of the individual consis-
tency spaces of each DAE mode. In fact, it is quite clear that
the average system most evolve within this intersection if it
exists. Note that in the above counter example we had

⇧1⇧2 = ⇧1 6= ⇧2 = ⇧2⇧1.

We are now ready to state our main result concerning aver-
aging for switched DAEs whose proof can be found in [10].

Theorem 2.2 (Averaging for switched DAEs) Consider

the impulse free regular switched DAE (3) with flow matrices

Adiff
1 , . . . , Adiff

M and consistency projectors ⇧1, . . . ,⇧M satis-

fying (4). Then the average system

ẋav = ⇧\A
diff
av ⇧\xav, xav(0) = ⇧\x(0�)

where Adiff
av := d1A

diff
1 + d2A

diff
2 + . . .+ dMAdiff

M satisfies

kx(t)� xav(t)k = O(p) 8t 2 (0, T ].

We illustrate the theoretical result with the following ex-
ample based on a simple electrical circuit.

C1 vC1 C2 vC2

iR

R

Fig. 2: A simple switching electrical circuit

Example 2.3 Consider the electrical circuit as shown in
Figure 2. Let the state variable be x = (vC1 , vC2 , iR)

>, then
it is easily seen, that the dynamics for the open switch can be
described by E1ẋ = A1x where

(E1, A1) =
⇣h 0 0 0

C1 0 0
0 C2 0

i
,
h
0 -1 -R
0 0 0
0 0 -1

i⌘
,

and for the closed switch the dynamics are given by

(E2, A2) =
⇣h

0 0 0
C1 C2 0
0 0 0

i
,
h
0 1 -R
0 0 1
1 -1 0

i⌘
.

The corresponding consistency projectors are

⇧1 =


1 0 0
0 1 0

0
1
R 0

�
, ⇧2 = 1

C1+C2

"
C1 C2 0
C1 C2 0
C1
R

C2
R 0

#

and (4) holds:

⇧1⇧2 = ⇧2 = ⇧2⇧1.

Hence for sufficiently fast switching any solution can be ap-
proximated by a solution of the average system, although the
solution of the switched DAE still exhibits jumps. This be-
havior is illustrated in Figure 3 for the duty cycle d1 = 0.4
(and therefore d2 = 0.6) and period p = 0.02.
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Fig. 3: Simulation result for the electrical circuit example.
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An overview on averaging for pulse-modulated switched sys-
tems, in: Proc. 50th IEEE Conf. Decis. Control and Euro-
pean Control Conference ECC 2011, Orlando, USA, (2011),
pp. 1860–1865.

[2] C. PEDICINI, L. IANNELLI, and F. VASCA, The averaging
method for control design and stability analysis of practical
switched systems, in: 2012 IEEE Conf. Control Appl. (CCA),
Part of 2012 IEEE Multi-Conf. Systems Control, Dubrovnik,
Croatia, (2012), p. 1285-1290.

[3] Z. SUN and S. S. GE, Switched linear systems, Communica-
tions and Control Engineering (Springer London, 2005).

[4] S. TRENN, Switched differential algebraic equations, in: Dy-
namics and Control of Switched Electronic Systems, edited
by F. Vasca and L. Iannelli (Springer London, 2012), chap. 6,
pp. 189–216.

[5] S. TRENN, Distributional differential algebraic equations,
PhD thesis, Institut für Mathematik, Technische Universität
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