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Abstract—Computation of periodic steady state in nonlinear
circuits is a key issue. Power electronics converters represent an
interesting class of switched nonlinear circuits. The behavior of
the converter is obtained by the commutations of the electronic
devices which determine the switchings among the different
converter modes. Switchings can be classified as external, if
forced by directly manipulable control variables, and internal
if determined by state dependent conditions. The presence of
internal switchings makes difficult to know a priori the sequence
of modes and also open loop steady state behaviors are difficult
to be obtained. In this paper the complementarity modeling
framework is proposed as a possible approach for computing
periodic steady state oscillations in power converters with internal
switchings. It is shown how linear complementarity systems can
be used to model the behavior of a wide class of power converters.
The discretization of such model allows to formulate a static
complementarity problem whose solution provides the steady
state oscillation of the converter. It is proved that backward
Zero–Order–Hold technique preserves passivity through the
discretization and allows to determine the unique solution of
the complementary problem. A resonant converter and a dc/dc
voltage–mode controlled buck converter are used as examples.

I. INTRODUCTION

Most power converters can be viewed as electrical networks
with linear elements (resistors, inductors, capacitors, trans-
formers), voltage and current sources, and electronic devices
such as diodes and electronic switches (thyristors, transistors).
A classical approach for modeling power converters consists of
idealizing diodes and switches with short circuits, open circuits
or similar characteristics, discriminating among the different
modes of the converter, building for each mode a linear–time–
invariant dynamic model and determining the conditions for
the commutations among the different modes [1], [2]. The
resulting model is usually called a switched model. The com-
mutations of the electronic devices are typically classified as
externally controlled, when an independent signal determines
the state of the switch, or internally controlled. Internally
controlled commutations can be due to closed loop controlled
switches or to change in diodes state from conducting to
blocking or vice-versa. The discontinuous conduction mode
is a typical example of the latter class. In the presence
of internally controlled commutations the switched model
eventually becomes rather complex also for simple converter
topologies [1], [3]. In this paper we deal with the computation
of steady state oscillation of known period (not necessarily
equal to the switching period) for power converters with
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internally controlled commutations. The class of converters
considered can contain diodes and controlled switches, such
that the converter can be represented as a circuit with diodes
and state dependent (possibly discontinuous) inputs.

The model complexity in the presence of internally con-
trolled commutations predicts the difficulties for knowing
a priori the sequence of modes, also in the steady state.
Using time–stepping simulations and ‘waiting’ for possible
steady state is often not practical because in most cases
the time constants of the modes are much larger than the
switching period. The problem of finding directly the steady
state solution for smooth nonlinear or piecewise-linear circuits
has been investigated since tents of years ago and it is still
of interest [4]. Dealing with power converters the solutions
proposed in the literature can be classified as frequency–
domain methods and time–domain methods. Examples of
frequency–domain approaches are fundamental mode approxi-
mation [5], harmonic balance [6], [7], describing function [8].
By using their basic formulations, these approaches are very
useful in order to obtain an estimation of the oscillation,
but may become too computationally expensive if high order
harmonics are involved in the solution. Within the time–
domain framework most techniques are based on the classical
shooting method which is modified in order to make it suitable
for switched systems. Several papers have been published
on that type of solution, already before 1990, see [9] and
the references therein, and also in the next decade, see [10]
and the references therein. One of the main problems when
applying the shooting method to power converters consists
of the knowledge of the sequence of modes in steady state,
or in other words on the evaluation of the Jacobian for the
steady state map. Usually the Jacobian is numerically obtained
through time–stepping simulations over one period, starting
from a guess of the state variables at steady state [10]–[12].
The Jacobian computation is a key issue for time–domain
approaches when applied to switched models. This is also
demonstrated by several papers dedicated to the sensitivity
analysis of the switching times with respect to variations of
the initial state guess, see among others [9], [13], [14]. The
Jacobian computation problem becomes also more critical
in some specific situations: when a small variation of the
initial state causes a change in the sequence of modes, e.g.
around the boundary between continuous and discontinuous
conduction modes; for the computation of unstable steady state
orbits; in the presence of state jumps. Within the literature
on steady state for power converters one should also mention
some interesting contributions dealing with specific issues:
solutions for autonomous converters where the oscillation
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period is unknown [11], [15], [16]; numerical efficiency by
parallel processing [17]; minimization of the number of state
variables via topological analysis [18]. Some other solutions
are dedicated to specific topologies [19], [20] or are based on
equivalent impedances models of the switches [21], [22].

In this paper, by using both frequency–domain and time–
domain ingredients, we propose the use of the complemen-
tarity formalism [23] for computing periodic oscillations for a
wide class of power converters. Complementarity systems have
been used to model (dynamic) switched electrical networks
that contain ideal diodes and ideal switches [24], [25]. More
recently the complementarity formalism has been proposed
as an interesting alternative for obtaining complete switched
models of power electronics converters [26]. The complemen-
tarity model is simple to be built and captures all modes of the
converter, without enumerating them, nor assuming a priori
knowledge of the sequence of modes and of the switching
time commutation instants. Classical techniques usually allow
to know the sequence of modes, but that might depend, also
for simple topologies, on the parameters and inputs values.
Instead, such information is not used at all for the construction
of the proposed complementarity model. For example if some
parameter of the converter is modified making the converter
operating in continuous or discontinuous conduction mode, the
sequence order of modes changes (we have one more mode
when some current goes to zero during a period of the steady
state oscillation) but the proposed technique is still able to find
the steady state periodic oscillation without modifying any-
thing in the model as well as in the algorithm. The construction
of the complementarity model requires only the application of
Kirchhoff Voltage and Current Laws on the assigned topology,
similarly to what happens for the model construction of a
generic electrical circuit by using the classical modified nodal
analysis approach. On the other hand, the model of each mode
can be obtained through simple algebraic transformations on
the general complementarity model [26], [27]. The converter
complementarity model is used to reformulate the problem of
the computation of a periodic steady state oscillation as a static
linear complementarity problem. We also prove that if the
circuit is passive and consistency of the model discretization
holds, the solution of the complementarity problem and the
corresponding periodic oscillation are unique. The proposed
approach is tested for the computation of the periodic steady
state oscillations in a LLC resonant converter [28]–[31] and for
computing multiple periodic oscillations (stable and unstable)
of a voltage–mode controlled dc/dc buck converter.

II. COMPLEMENTARITY MODELS OF POWER CONVERTERS

Before presenting some examples of complementarity mod-
els of power converters, we introduce some useful definitions.

Definition 1: Given a real vector q and a real matrix M ,
a linear complementarity problem (LCP) consists of finding a
real vector z such that

z > 0 (1a)
q +Mz > 0 (1b)
z

T
(q+Mz) = 0, (1c)

where the inequalities are considered componentwise.
In the sequel conditions (1) that define the LCP(q,M ) will

be more compactly indicated by means of the complementarity
condition

w = q +Mz (2a)
0 6 w ? z > 0. (2b)

Then ? is the orthogonality symbol, i.e. given two real vectors
z and w the notation w ? z stands for z

T
w = 0 (the scalar

product is zero). The relation (2b) implies that for each pair
of scalar complementarity variables at least one of them must
be zero.

It can be shown that the LCP(q,M ) has a unique solution
for any q if and only if M is a P-matrix [23]. A matrix M is
called a P-matrix if all its principal minors are strictly positive.
According to the definition, every positive definite matrix is
a P-matrix but the converse is not true. Therefore being M a
positive definite matrix implies uniqueness of the LCP(q,M )
solution.

We now introduce the concept of a complementarity system.
Definition 2: A continuous–time linear complementarity

system (LCS) is the following linear system subject to com-
plementarity constraints on z and w variables:

ẋ = Acx+Bcz + Ecu (3a)
w = Ccx+Dcz + Fcu (3b)
0 6 w ? z > 0, (3c)

where x 2 RN
x is the state vector, u 2 RN

u is an exogenous
input vector, z 2 RN

z and w 2 RN
z are the complementarity

variables, and Ac, Bc, Cc, Dc, Ec, Fc are real matrices of
suitable dimensions.

In order to present the converters complementarity models,
it is important to describe the behavior of the so–called
ideal diode (ID) within the complementarity framework. It is
straightforward that the current–voltage characteristic of an ID
shown in Fig. 1 can be represented by means of the com-
plementarity condition (3c). Note that the complementarity
condition (3c) is still representative of the ID characteristic
also by choosing w as the ID current and z as the ID voltage.
The topology of the circuit dictates whether a diode current
should be denoted as z (and thus affecting the time derivative
of a state variable) or w (and thus not entering in the dynamic
equations of the state but satisfying just algebraic equations).
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w

z

Fig. 1. Ideal diode symbol with the corresponding current–voltage char-
acteristic and the indication of a possible pair of complementarity variables.
Note that by choosing z as the voltage and w as the current, the characteristic
maintain the same (complementarity) representation.

In what follows we consider two power converters, whose
models can be represented as LCSs and for which it is
interesting to analyze their cyclic steady state behaviors.



A. Resonant converter

A typical LLC resonant dc/dc converter is shown in
Fig. 2 [28], [29], [32]. The two ideal switches S1 and S2

are controlled in anti–phase with a switching frequency fs.
The modulation determines a square wave voltage vin with
amplitude Vdc. The capacitor C1 together with the inductors
L1 and L2 represent a resonant circuit. A transformer with
center tapped secondary is used to connect the resonant circuit
to a diode rectifier. If |L2ẋ3| < nx4 the converter will
start operating in discontinuous conduction mode. For a more
detailed description of the circuit operations see [28], [29].
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Fig. 2. Circuit scheme of a dc/dc LLC resonant converter.

By applying the Kirchhoff laws to the circuit in Fig. 2 and
by using the ideal transformer relations it follows:

L1ẋ1 = �R1x1 � x2 � L2ẋ3 + vin (4a)
C1ẋ2 = x1 (4b)

C2ẋ4 = � 1

R2
x4 + w1 + z2 (4c)

w2 = z1 +
2

n

L2ẋ3 (4d)

which must be satisfied independently of the commutations of
the switches and independently of the conducting or blocking
states of the diodes. From the voltage and current character-
istics of the ideal transformer it follows

L2ẋ3 = n(x4 � z1) (5a)

x1 � x3 =

1

n

(w1 � z2). (5b)

By combining (4) and (5) the model of the resonant converter
becomes

L1ẋ1 = �R1x1 � x2 � nx4 + nz1 + vin (6a)
C1ẋ2 = x1 (6b)
L2ẋ3 = nx4 � nz1 (6c)

C2ẋ4 = nx1 � nx3 �
1

R2
x4 + 2z2 (6d)

w1 = nx1 � nx3 + z2 (6e)
w2 = 2x4 � z1. (6f)

By using the IDs characteristics 0 6 wi ? zi > 0 with
i = 1, 2, and by choosing u = vin the model (6) can be simply
recast in the form (3) with matrices given in the Appendix A.

In ordinary operating conditions the input vin is periodic
of period Ts = 1/fs. In order to obtain the control–to–output
frequency response the input vin can be chosen to be periodic
of period ↵Ts, with a suitable integer ↵ [5], [8].
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Fig. 3. Buck converter with PWM voltage–mode control.

B. Voltage–mode controlled buck converter

The complementarity model (3) is able to capture the
behavior of some power converters topologies also under
closed loop operating conditions. A dc/dc buck converter with
voltage-mode pulse width modulation control is depicted in
Fig. 3. Under normal operating conditions the behavior of the
controlled buck converter can be represented by means of the
circuit reported in Fig. 4. The input voltage vin is imposed by
the feedback control. In particular

vin = Vdc step (vc � �) (7a)

�(t) =

�

Ts
mod (t, Ts), (7b)

where � is a sawtooth signal with amplitude � and period Ts

and vc is the control voltage. The set–valued function (7a) is
defined as follows: vin = Vdc for vc > �, vin = 0 for vc < �,
and vin 2 [0, Vdc] for vc = �. That function can be represented
in the following complementarity form

vin = �Vdcz2 + Vdc (8a)
w2 = z3 + vc � � (8b)
w3 = �Vdcz2 + Vdc (8c)
0 6 w2 ? z2 > 0 (8d)
0 6 w3 ? z3 > 0. (8e)

The complementarity variables z2, z3 and w2, w3 have not
been marked in Fig. 3 and Fig. 4 since they are not physical
variables, but they have been introduced in order to model the
step function within the complementarity framework. Equa-
tions (8) can be simply explained. Indeed if vc > �, from (8b)
it follows that w2 must be strictly positive independently of
z3 (zero or positive). Since the product between w2 and z2

must be zero, it follows that z2 = 0 and from (8a) we get
vin = Vdc. If vc < �, from (8b) it follows z3 > 0 and then
from (8e) it must be w3 = 0, then from (8c) z2 = 1 and
vin = 0. Finally if vc = �, from (8c) and (8d) it follows that
z2 can take any value between 0 and 1 and then vin can take
any value between 0 and Vdc.

From Fig. 3 we can write

vc = kp (Vref � x2) . (9)
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Fig. 4. Equivalent circuit of a controlled dc/dc buck converter.

By applying the Kirchhoff laws to the circuit in Fig. 3:

L1ẋ1 = �R1x1 � x2 + z1 + vin (10a)

C2ẋ2 = x1 �
1

R2
x2 (10b)

w1 = x1. (10c)

By using (10)–(9) it is simple to obtain the model (3) with
x =

�
x1 x2

�T , u =

�
1 �

�T , and the suitable matrices
given in Appendix A.

Due to the external periodic signal � (it is the PWM
carrier signal or, equivalently, the dither signal [33]), a forced
oscillation is expected. With the aim of obtaining the control–
to–output frequency response the input vc can be chosen to
be periodic of period ↵Ts, with a suitable integer ↵ [32].

III. PERIODIC STEADY STATE OSCILLATIONS

In order to analyze the periodic steady state oscillations
exhibited by systems in the form (3), one should first state
existence and uniqueness of such type of solutions. A well-
posedness analysis for (3) is out of the scope of this paper.
On the other hand some considerations on that are in order.
To analyze well-posedness one should first fix the solution
concept. In [25] it has been shown that under the passivity as-
sumption on (Ac, Bc, Cc, Dc) and for Bohl-type input signals
u, i.e. signals that have a rational and strictly proper Laplace
transform, under some technical assumptions it is possible to
prove the existence of a so-called forward solution for (3).
For a large class of power converters it is simple to show that
the passivity hypothesis holds, but the typical inputs u to be
considered are piecewise continuous which in general, clearly,
are not Bohl-type signals. Therefore in order to use the forward
solution concept one should extend the results in [25] to the
case of piecewise continuous input signals. A contribution in
this direction can be found in [34]. Instead, for our analysis
we use the concept of weak solution [27].

Definition 3: Given an input u(t), by a weak solution of (3)
we mean a pair of trajectories (x(t), z(t)) such that x(t) is
absolutely continuous, z(t) is integrable on [0, T ] and

x(t)� x(0) =

Z t

0
[Acx(⌧) +Bcz(⌧) + Ecu(⌧)] d⌧ (11a)

0 6Ccx(t) +Dcz(t) + Fcu(t) ? z(t) > 0, (11b)

for all t 2 [0, T ].
Note that by using the weak solution concept we also

exclude possible inconsistent initial conditions [35] and state
jumps. In what follows we use the weak solution concept
in order to compute possible cyclic steady state oscillations
exhibited by the class of switched electronic systems under
investigation.

A. Cyclic steady state behavior

Assume that given a periodic input u(t) of period T , the
system (3) has a periodic weak solution, i.e. a weak solution
(x(t), z(t)) satisfying (3) for almost every time instant t and
such that x(t) = x(t+ T ), z(t) = z(t+ T ) for every t, with
T being the period of the solution. In the sequel a periodic
weak solution will be also indicated as a periodic (steady state)
oscillation. Under the above assumptions we can write

x(t) = e

A
c

t
x(0)+

Z t

0
e

A
c

(t�⌧)
(Bcz(⌧) + Ecu(⌧)) d⌧ , (12)

and, being x(t+ T ) = x(t), we can write

x(T ) = e

A
c

T
x(0) +

Z T

0
e

A
c

(T�⌧)
⌫(⌧)d⌧ = x(0), (13)

where for the sake of notation we used the position

⌫ := Bcz + Ecu. (14)

Then from (13)

x(0) =

�
I � e

A
c

T
��1

Z T

0
e

A
c

(T�⌧)
⌫(⌧)d⌧ . (15)

Clearly, if Ac has some eigenvalue equal to zero, the periodic
solution will not be unique. On the other hand, if Ac has
all eigenvalue different from zero we are not sure on the
uniqueness of the periodic solution because the initial condi-
tion of the steady state solution depends on the external input
u and on the complementarity variable z which is unknown.
By substituting (15) in (12) it follows that for any t 2 [0, T ]

x(t) = e

A
c

t
�
I � e

A
c

T
��1

Z T

0
e

A
c

(T�⌧)
⌫(⌧)d⌧

+

Z t

0
e

A
c

(t�⌧)
⌫(⌧)d⌧ . (16)

By using (16) in (3b) the existence of a periodic solution
for (3) can be reformulated as the existence of a trajectory
z(t) solution of the following continuous-time linear comple-
mentarity problem, for any t 2 [0, T ]

0 6Cce
A

c

t
�
I � e

A
c

T
��1

Z T

0
e

A
c

(T�⌧)
⌫(⌧)d⌧

+

Z t

0
Cce

A
c

(t�⌧)
⌫(⌧)d⌧ +Dcz(t) + Fcu(t) ? z(t) > 0.

(17)

Finding a solution z(t) for (17) is a not easy task. The alter-
native we propose consists in using a discretization approach.

B. Discretization of continuous LCP

Discretize the time interval [0, T ] in N time intervals of
length ✓:

0 < t1 < · · · tk < · · · < tN�1 < tN = T,



with tk = k · ✓ and T = N✓. By using(16) in (3b) evaluated
in tk

w(tk) := wk = Cc

�
e

A
c

✓
�k ⇣

I �
�
e

A
c

✓
�N⌘�1

·
"

NX

i=1

Z i✓

(i�1)✓
e

A
c

(N✓�⌧)
⌫(⌧)d⌧

#

+ Cc

"
kX

i=1

Z i✓

(i�1)✓
e

A
c

(k✓�⌧)
⌫(⌧)d⌧

#
+Dczk + Fcuk.

(18)

By considering a backward Zero–Order–Hold discretization
technique, we assume

⌫(⌧) = ⌫i 8⌧ 2 ( (i� 1)✓, i✓ ] (19)

for i = 1, . . . , N . Then (18) becomes

wk =Cc

�
e

A
c

✓
�k ⇣

I �
�
e

A
c

✓
�N⌘�1

·
"

NX

i=1

Z i✓

(i�1)✓
e

A
c

(N✓�⌧)
d⌧ ⌫i

#

+ Cc

"
kX

i=1

Z i✓

(i�1)✓
e

A
c

(k✓�⌧)
d⌧ ⌫i

#
+Dczk + Fcuk

(20)

for k = 1, . . . , N . By assuming Ac to be invertible we get
Z i✓

(i�1)✓
e

A
c

(k✓�⌧)
d⌧ =

Z (k�i)✓+✓

(k�i)✓
e

A
c

y
dy

= A

�1
c e

A
c

(k�i)✓
�
e

A
c

✓ � I

�

=

�
e

A
c

✓
�k�i

A

�1
c

�
e

A
c

✓ � I

�
. (21)

Define the following matrices:

A :=e

A
c

✓ (22a)
B :=A

�1
c

�
e

A
c

✓ � I

�
Bc (22b)

C :=CcA (22c)
D :=Dc + CcB (22d)
E :=A

�1
c

�
e

A
c

✓ � I

�
Ec (22e)

F :=Fc + CcE (22f)
⇧ :=(I �A

N
)

�1
. (22g)

Note that ⇧ is well defined because we assume that Ac has
nonzero eigenvalues. The matrix ⇧ satisfies the following
properties:

A⇧ = ⇧A (23a)
⇧A

N
= ⇧� I. (23b)

By using (23), with simple algebraic manipulations (20) can
be rewritten as

wk =CA

k�1
⇧

"
NX

i=1

A

N�i
Bzi +

NX

i=1

A

N�i
Eui

#

+ C

"
k�1X

i=1

A

k�1�i
Bzi +

k�1X

i=1

A

k�1�i
Eui

#

+Dzk + Fuk (24)

with 0 6 wk ? zk > 0 for k = 1, . . . , N . By using (23) the
equations (24) can be rewritten as the following LCP(q,M ):

0

BBB@

w1

w2
...

wN

1

CCCA
= q +M

0

BBB@

z1

z2
...
zN

1

CCCA
(25a)

0 6 wk ? zk > 0, k = 1, . . . , N (25b)

where

M =

0

BBB@

D 0 · · · 0

0 D · · · 0

...
...

. . .
...

0 0 · · · D

1

CCCA

+

0

BBB@

C⇧A

N�1
B C⇧A

N�2
B · · · C⇧B

C⇧B C⇧A

N�1
B · · · C⇧AB

...
...

. . .
...

C⇧A

N�2
B C⇧A

N�3
B · · · C⇧A

N�1
B

1

CCCA
(26)

and q is reported in (27). Note that M is a block circulant
matrix. Moreover the LCP (25) cannot be decoupled into
N different LCPs because for each k all components of the
sequence zi for i = 1, . . . , N appear into wk.

C. Discretization of continuous LCS

The LCP (25)–(27) can be also obtained by discretizing the
LCS (3). By discretizing (3a) with a backward Zero–Order–
Hold technique with sampling period ✓, it is possible to get
the following discrete–time system:

xk = Axk�1 +Bzk + Euk. (28)

where the matrices A, B, E are given by (22). By substitut-
ing (28) in (3b) evaluated at step k, one obtains the following
discrete–time linear complementarity system

xk = Axk�1 +Bzk + Euk (29a)
wk = Cxk�1 +Dzk + Fuk (29b)

0 6 wk ? zk > 0. (29c)

Consider the system (29) forced by a periodic external signal
{uk} of period N . Assume the system admits a periodic forced
oscillation, i.e. xk+N = xk 8k. The state evolution gives

xN = A

N
x0 +

NX

i=1

A

N�i
(Bzi + Eui) = x0. (30)

By solving with respect to x0:

x0 = ⇧

NX

i=1

A

N�i
(Bzi + Eui) . (31)

Note that ui, i = 1, . . . , N is a known input whereas
zi, i = 1, . . . , N are unknowns. By using (31) in (29b) for
k = 1, . . . , N it is simple to show that the same LCP (25)–(27)
is obtained again.



q =

0

BBB@

q1

q2
...
qN

1

CCCA
=

0

BBB@

C⇧A

N�1
E + F C⇧A

N�2
E · · · C⇧E

C⇧E C⇧A

N�1
E + F · · · C⇧AE

...
...

. . .
...

C⇧A

N�2
E C⇧A

N�3
E · · · C⇧A

N�1
E + F

1

CCCA

0

BBB@

u1

u2
...

uN

1

CCCA
(27)

D. Continuous and discrete LCPs

Assume that the continuous–time complementarity sys-
tem (3) has a periodic oscillation of period T = ↵Ts with ↵

being an integer. Without loss of generality one can choose
a sampling period ✓ such that Ts = �✓, with � being a
sufficiently large integer. Therefore it will be T = ↵Ts =

↵�✓ = N✓, with N = ↵� being a sufficiently large integer.
Note that the continuous–time instants at which conditions (3c)
change, i.e. when one or more components of w or z become
zero, do not need to be known a priori and do not need to be
sampling time instants. In other words the sequence of modes
of the periodic oscillation is not fixed a priori.

The LCP (25)–(27) might have no solution, one solution
or multiple solutions. Each solution of the LCP (25)–(27)
provides a periodic sequence zk with k = 1, . . . , N , and, by
using (29a)–(29b), one can also compute the corresponding
sequence xk. Therefore one would expect that each pair of
periodic sequences (xk, zk) allows to compute an approxima-
tion of a periodic solution of (3). To this aim one should prove
consistency of the discretization [27], [36], [37]. For instance
one might prove that a continuous piecewise linear interpolant
obtained from the periodic sequences (xk, zk) converges to
a periodic solution of (3) when ✓ tends to zero. Such a
consistency result is out of the scope of this paper and it is not
easy to be proved. In [27] some contributions in this direction
are proposed, but under assumptions which are not satisfied
in our scenario, i.e. Lipschitz continuous inputs and excluding
the boundary condition x(T ) = x(0).

In the sequel we assume that each solution of the discrete
LCP (25)–(27) approximates a sample of a solution of the
continuous LCP (17) and then it allows to compute a steady
state periodic oscillation.

IV. UNIQUENESS OF SOLUTION UNDER PASSIVITY

The case when the LCP (25)–(27) has a unique solution
is of particular interest. In this section we show that if
the continuous–time model (3a)–(3b) is strictly passive with
respect to the input z and the output w, then for a sufficiently
small sampling period the discrete transfer function obtained
from (29a)–(29b) with (22) is strictly positive real and the
LCP (25)–(27) will have a unique solution. The relevance
of such result is justified by the fact that for many power
converters the passivity of a model in the form (3a)–(3b) can
be simply stated by using circuit theory arguments [26].

A. Passivity and positive realness

Here we recall definitions of passivity and positive realness
and their relationship.

Definition 4: A continuous–time system (3a)–(3b) is said
to be passive with respect to the input z and the output w

if there exists a function V : Rn ! R+ (called a storage
function) such that

V (x(t0)) +

Z t1

t0

w

T
(t)z(t) dt > V (x(t1)) (32)

holds for all t1 > t0, and for all solutions of (3a)–(3b) with
u = 0.

A continuous–time system (3a)–(3b) is said to be strictly
passive if the inequality (32) is strict.

The passivity can be related to the positive realness of the
corresponding transfer function. From [38]:

Definition 5: A transfer matrix Gc(s) is said to be strictly
positive real if:

• Gc(s� ✏) has no pole in Re[s] > 0;
• Gc(s� ✏) is real for all positive real s;
• Gc(s� ✏) +G

⇤
c(s� ✏) > 0 for all Re[s] > 0.

An important result that will be used below is that for
linear–time–invariant systems the concepts of (strictly) pas-
sivity and (strictly) positive realness are equivalent.

A further useful definition is strictly positive realness for
discrete–time systems.

Definition 6: A proper rational discrete transfer matrix
G(z) is said to be strictly positive real if :

• poles of all elements of G(z) are in |z| < 1;
• the matrix G(e

j⇠
)+G

T
(e

�j⇠
) is positive definite for ✓ 2

[�⇡,⇡).

B. Preserving positive realness under discretization

Consider (29a)–(29b) as being a discretization of (3a)–(3b)
and assume that

Gc(s) = Cc(sI �Ac)
�1

Bc +Dc (33)

is strictly positive real. It is not obvious whether the discrete
transfer matrix

G(z) = C(zI �A)

�1
B +D (34)

is strictly positive real or not. Indeed such implication depends
on the particular discretization technique adopted. By using the
backward Euler discretization technique the matrices in (29a)–
(29b) are given by

A := (I �Ac✓)
�1 (35a)

B :=✓ (I �Ac✓)
�1

Bc (35b)

C :=Cc (I �Ac✓)
�1 (35c)

D :=Dc + ✓Cc (I �Ac✓)
�1

Bc. (35d)



In [39] it has been proved that if (33) is positive real then (34)
with (35) is discrete positive real as well. On the other hand
by using the forward Euler discretization technique it can
be easily found that positive realness is not preserved under
discretization, for any sampling period. In what follows we
show that by choosing a sufficiently small sampling period,
positive realness is preserved under discretization with the
backward Zero–Order–Hold technique, see (22).

Theorem 1: Given a strictly positive real continuous trans-
fer matrix (33), there exists a sufficiently small ✓0 > 0 such
that for any sampling period ✓ 6 ✓0 the discrete transfer
matrix (34) obtained by using the backward Zero–Order–Hold
discretization technique, i.e. by using (22a)–(22d), is strictly
positive real.

Proof: See [40].

C. Uniqueness of the LCP solution
We are now ready to show that if the transfer matrix (34) is

strictly positive real, then the LCP (25) has a unique solution.
To prove that we will use a frequency–domain analysis. Since
the sequence zk is periodic with zN = z0, its Discrete Fourier
Transform (DFT) can be written as

Z(l) =

N�1X

k=0

zk⌦
kl

=

NX

k=1

zk⌦
kl (36)

with ⌦ = e

�j2⇡/N . By applying the DFT to (29) we get:

W (l) =

h
D + C

�
⌦

�l
I �A

��1
B

i
Z(l)

+

h
F + C

�
⌦

�l
I �A

��1
E

i
U(l). (37)

Since by definition the inverse DFT is

wk =

1

N

N�1X

l=0

W (l)⌦

�kl
=

1

N

NX

l=1

W (l)⌦

�kl
, (38)

then

wk =

1

N

NX

l=1

"⇣
D + C

�
⌦

�l
I �A

��1
B

⌘ NX

i=1

zi⌦
il

!

+

h
F + C

�
⌦

�l
I �A

��1
E

i NX

i=1

ui⌦
il

!#
⌦

�kl

=

NX

i=1

"
1

N

NX

l=1

⇣
D + C

�
⌦

�l
I �A

��1
B

⌘
⌦

(i�k)l

#
zi

+

NX

i=1

"
1

N

NX

l=1

⇣
F + C

�
⌦

�l
I �A

��1
E

⌘
⌦

(i�k)l

#
ui

(39)

for k = 0, . . . , N � 1. Since for periodicity u0 = uN , z0 =

zN , w0 = wN , by exploiting the circulant properties of the
matrices the problem can be more compactly rewritten as

0

BBB@

w1

w2
...

wN

1

CCCA
= q̃ +

˜

M

0

BBB@

z1

z2
...
zN

1

CCCA
(40a)

0 6 wk ? zk > 0, k = 1, . . . , N. (40b)

where ˜

M is a block matrix circulant whose block k-th, i-th is

{ ˜

M}k,i =
1

N

NX

l=1

⇣
D + C

�
⌦

�l
I �A

��1
B

⌘
⌦

(i�k)l
. (41)

The expression (41) can be interpreted as the inverse DFT
of the frequency response of the cyclic linear–time–invariant
system (A, B, C, D) [41]. By construction it follows that (40)
is equal to (25) and then q = q̃ and M =

˜

M . So as mentioned
above, by using the formulation (25) it is not easy to show the
uniqueness of the LCP solution. We will tackle such issue by
using (40), instead.
In particular we can prove the following

Theorem 2: Assume the discrete transfer matrix 34 is
strictly positive real. Then the LCP (40)–(41), or equivalently
the LCP (25)–(27), has a unique solution.

Proof: See [40].

V. SIMULATION RESULTS

In this section we apply the proposed algorithm to a dc/dc
buck converter and to a resonant converter. By considering
open loop operating conditions for the (passive) dc/dc buck
converter the accuracy of the proposed approach for the
computation of the control–to–output frequency response, both
in continuous and discontinuous conduction modes, will be
shown. Then, the buck converter under closed loop voltage
mode control will be analyzed as an example of non passive
circuit and the corresponding multiple periodic steady state
solutions will be computed. Finally a resonant converter ex-
ample for which the computation of steady state behavior is of
practical importance will be presented. In all scenarios the dif-
ferent LCP problems will be solved by using the very efficient
PATH algorithm [42] and, where needed, by implementing the
algorithm proposed in [43] for finding multiple solutions.

A. DC-DC buck converter

Consider the dc-dc buck converter depicted in Fig. 4 with
open loop pulse width modulation, i.e. vc in (7) is an exoge-
nous constant or periodic signal and not given by (9). The
LCP (25)–(27) can be used to compute the frequency control–
to–output response of the converter. To this aim, in the particu-
lar case when the converter operates in continuous conduction
mode, one can estimate the accuracy of the complementarity
solution by comparing the results with those achievable by
using the averaged model. Since we are assuming continuous
conduction mode, the averaged model provides [32], [33]:

˜

X2(s) = G(s)

Vdc

�

Vc(s), (42)

with x̃2 being the average values of x2 and

G(s) =

R2

R1 +R2

L1C2R2

R1 +R2
s

2
+

C2R1R2 + L1

R1 +R2
s+ 1

. (43)

For this particular case one can also compute the Laplace
transform of the output of the circuit in Fig. 4 with the
diode replaced with a short circuit (the converter is assumed



to operate in continuous conduction mode) and vin being a
square wave signal, see (7).

X2(s) = G(s)Vin(s). (44)

First we assume a constant control signal vc = V0. As it
is well known the typical steady state behavior is a periodic
oscillation with period Ts. We want to use the LCP approach
for computing the average value of the output x2 under such
conditions. In this case, of course, the averaged model (42)
provides correctly the same value obtained through the ana-
lytical model (44) since we are evaluating the values at zero
frequency. Thus we can define the relative percentage error
given by the LCP solution as

�����
1

N

NX

k=1

x2k �G(0)

Vdc

�

V0

�����
�

G(0)VdcV0
· 100, (45)

where x2k is the output voltage computed with the LCP
approach and N the number of samples per period such that
h = Ts/N .

If the LCP solution have been affected only by a discretiza-
tion error due to the fact that the switching time instant is
evaluated as the discrete time instant closest to a multiple of
the sampling period, the expression (45) would be (it is not
difficult to prove that)

�

V0N

����1 +
�
V0N

�

⌫
� V0N

�

���� · 100, (46)

where bxc is the largest integer less than or equal to x.
Consider the following converter parameters: R1 = 0.1⌦,
R2 = 12.5⌦, L = 2.08mH, C2 = 100 nF, Vdc = 33V,
� = 1V, Ts = 1/30ms, and the control voltage as a constant
vc = V0 = 0.3V. In this scenario numerical simulations
show that the error introduced by the LCP method is almost
completely due to the discretization. Indeed in Fig. 5 a his-
togram analysis on the relative percentage error due to the LCP
method is reported and it shows that the proposed approach in
this case introduces only numerical errors that can be assumed
negligible. Since vin is a squarewave of known period and
amplitude, by using the frequency response corresponding
to (44) one can obtain the values also for the first and higher
order harmonics of the output voltage. In particular, confirmed
by the results of the LCP (24), one can easily compute an
average output voltage 9.8309732V, the first harmonic (at
fs = 1/Ts = 30 kHz) with 0.3095763V amplitude and zero
phase, and the second harmonic (at 2fs = 2/Ts = 60 kHz)
with 0.1437689V amplitude and zero phase.

A typical approach in order to obtain the control–to–output
frequency response of power converters consists of assuming
a control signal to be sinusoidal with nonzero mean: vc(t) =
V0 + V1 sin(2⇡t/Tc). Without loss of generality it is useful
to consider a control voltage period proportional to the carrier
signal period, i.e. Tc = NcTs with Nc positive integer. In order
to fix the size N of the LCP problem to be solved, the sampling
period is chosen such that h = Tc/N = Nc/NTs. Fig. 6
shows the results obtained for the first harmonic by varying
Nc = 2, 3, . . . , 10 with V1 = 0.03V and N = 343. The figure
confirms the good accuracy of the LCP solution and the well

Fig. 5. Histogram of the difference between the values given by (45) and
the values given by (46), for N = 13, 16, 19, . . . , 1357.

known result that the accuracy of the averaged model (42)
decreases when the ratio between the carrier frequency and
the modulating signal frequency decreases.
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Fig. 6. First harmonics of the output voltage obtained with the LCP solution
(⇤), the averaged model (4), and the frequency response corresponding to (44)
(�), for different values of N

c

.

The results presented above allow to confirm the good
accuracy obtained by using the LCP approach for computing
the cyclic steady state behavior of the converter. The LCP
approach becomes much more interesting when the Laplace
transform (44) cannot be computed because, for instance, the
converter operates in discontinuous conduction mode. In this
case Fig. 7 shows the results obtained for the first harmonic
of the LCP solution by varying Nc = 2, 3, . . . , 10 with
R2 = 250⌦. Note that in this case the Bode diagram of G(s)

presents a resonance peak at 10 kHz.
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Fig. 7. First harmonics of the output voltage obtained with the LCP solution
(⇤), with the “wrong” averaged model (4), and by evaluating the steady–
state of time–stepping simulations with PLECS [44] (�), under discontinuous
conduction mode, for different values of N

c

.

B. Closed loop buck converter with multiple solutions

Consider the dc/dc buck converter shown in Fig. 3 with the
following parameters: Vdc = 30V, R1 = 0⌦, L1 = 20mH,
C2 = 47µF, R2 = 22⌦, kp = 8.4, Ts = 400µs, � = 4.4,
Vref = 11.3V. As shown in [45] this circuit exhibits a period
doubling bifurcation, under the variation of the input voltage
Vdc. Indeed, for Vdc 2 [15, 24]V we have one stable periodic
solution with period Ts, whereas for Vdc 2 (24, 32]V the
closed loop system exhibits an unstable periodic solution of
period Ts and a stable periodic solution of period 2Ts. This is
confirmed by the fact that for Vdc = 30V the continuous–time
model (3a)–(3b) is not passive with respect to the input z and
the output w, hence we might have no solution, one solution
or multiple solutions for the LCP (25)–(27). In particular,
for Vdc = 30V we expect to find at least two solutions for
the LCP (25)–(27): the stable one with period 2Ts, and the
unstable one with period Ts.

Using a sampling period of 1.6µs we have 250 points
within Ts and we look for 500–points solutions. By applying
the algorithm presented in [43], it is possible to find three
solutions: the unstable solution with period Ts and two stable
solutions with period 2Ts, see Fig. 8. In particular, we get
two stable solutions with period 2Ts because the carrier signal
�, which is an input for the LCP (25)–(27), is periodic with
period Ts. Therefore one solution can be obtained from the
other by means of a time shift of Ts. Fig. 9 shows the
different solutions in the phase plane. The two stable solutions
obviously overlap in the phase plane.

Note that the steady state solutions are obtained without
knowing apriori the sequence of modes nor applying the
Poincaré maps. In particular, the unstable steady state solu-
tions is hard to find with methods based on time–stepping
simulations.
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Fig. 8. Carrier signal � (continuous line) and control voltages v
c

for stable
solutions with period 2T
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(dashed and dotted lines) and unstable solution of
period T
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(dash–dotted line).
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Fig. 9. Phase plane corresponding to solutions in Fig. 8: unstable (dotted)
and stable (continuous).

C. Steady state oscillation of resonant converters

Consider the dc/dc LLC resonant converter displayed in
Fig. 2 and assume the following circuit parameters: Vdc =

42V, R1 = 200m⌦, C1 = 138 nF, L1 = 7.6µH, n = 1.64,
C2 = 100µF. Define the following circuit parameters:

!0 =

1p
L1C1

, ⇢ =

2⇡fs

!0
, Q =

!0L1

n

2
R2

(47a)

AL =

L2

L1
, Mout =

nVout

Vdc
(47b)

where Vout is the average value over the period T of the
output voltage x4 at steady state. In Table I there are reported
the values of Mout obtained for Q = 0.1 and AL = 1 by
solving the LCP problem described in the previous section
and by using time–stepping simulations with PLECS [44],
for two values of the parameter ⇢. For each value of ⇢



N LCP PLECS LCP PLECS
⇢ = 1.00 ⇢ = 1.00 ⇢ = 0.723 ⇢ = 0.723

100 0.51223 0.51166 3.7796 3.7125
200 0.51204 0.51189 3.7784 3.7685
300 0.51200 0.51194 3.7777 3.7705
400 0.51199 0.51195 3.7775 3.7743
500 0.51198 0.51196 3.7775 3.7754
600 0.51198 0.51196 3.7774 3.7758
700 0.51197 0.51197 3.7774 3.7765

TABLE I
CONVERGENCE RATE FOR THE PARAMETER M

out

IN THE SOLUTION OF
THE COMPLEMENTARITY PROBLEM WITH RESPECT TO THE PLECS FIXED

TIME–STEPPING SIMULATIONS.

the solutions obtained with different number of samples N

per period T = 1/fs (which is fixed by choosing ⇢) are
shown. The results obtained by using the LCP and PLECS
are coherent, in the sense that the fixed time–step chosen in
PLECS is ✓ = T/N . For each value of ⇢, since T is fixed, the
accuracy of the solutions increases with N because a larger
number of sampling time instants per period are chosen. It is
clear the validity of the solutions obtained with the LCP that
reproduce the results obtained with the PLECS simulations.
The ratio between the average time needed to obtain the steady
state with the PLECS time–stepping simulations and the time
needed for solving the corresponding LCP increases with N

and goes approximatively from 1 to 10.
Fig. 10 and Fig. 11 display the steady state results obtained

by solving the corresponding LCPs for different values of the
load resistance, with N = 300 and AL corresponding to L2 =

9.7µH and L2 = L1, respectively.

Fig. 10. Average output voltage V
out

vs. the switching frequency f
s

(⇢ 2
[6, 12] ·10�4), for different values of the load resistances: R2 = 6.0⌦ (‘+’-
points), R2 = 4.5⌦ (‘o’-points), R2 = 1.5⌦ (‘⇤’-points). The continuous
lines are the interpolations of the LCP solutions and the points are the PLECS
results.

VI. CONCLUSION

Complementarity formalism has been recently proposed as
a framework for representing complete switched model of
power converters and for their time–domain analysis. The

Fig. 11. Converter gain M
out

vs. ⇢, for different values of the quality
factor: Q = 0.1 (‘⇤’-points), Q = 0.5 (‘o’-points), Q = 1 (‘+’-points),
Q = 5 (‘x’-points).

complementarity model can be constructed without explicitly
detailing all modes of the converter and without a priori
knowledge of the sequence of modes in the converter dynamic
evolution. In this paper it has been shown how the complemen-
tarity framework can be used to compute periodic oscillations
for power converters. Conditions for the existence of periodic
oscillations in terms of solvability of a suitable static linear
complementarity problem are obtained. The proposed proce-
dure does not need to fix a priori the shape of the periodic
oscillation and the examples considered have shown how it is
possible to capture the steady state behavior also for complex
scenarios such as power converters that exploit resonances,
operating in discontinuous conduction mode and exhibiting
unstable orbits.

Furthermore, as an instrumental result aimed to prove
uniqueness of the complementarity problem solution, in this
paper it has been shown how the positive realness of the
continuous time transfer matrix is preserved under the back-
ward ZOH discretization technique, for sufficiently small
discretization step, thus partly extending what already known
in the literature regarding the backward Euler discretization.
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APPENDIX A
MATRICES OF THE CONVERTERS MODELS

The matrices of the complementarity model (3) of the
resonant converter, obtained from (6), are

Ac =

0

BB@

�R1/L1 �1/L1 0 �n/L1

1/C1 0 0 0

0 0 0 n/L2

n/C2 0 �n/C2 �1/(R2C2)

1

CCA



Bc =

0

BB@

n/L1 0

0 0

�n/L2 0

0 2/C2

1

CCA , Ec =

0

BB@

1

0

0

0

1

CCA

Cc =

✓
n 0 �n 0

0 0 0 2

◆
, Dc =

✓
0 1

�1 0

◆
, Fc =

✓
0

0

◆

The matrices of the complementarity model (3) of the
voltage–mode controlled buck converter, obtained by elabo-
rating (10)-(8), are

Ac =

✓
�R1

L1
� 1

L1
1
C2

� 1
R2C2

◆
, Bc =

✓
1
L1

�V
dc

L1
0

0 0 0

◆

Ec =

✓
Vdc/L1 0

0 0

◆
, Cc =

0

@
1 0

0 �kp

0 0

1

A

Dc =

0

@
0 0 0

0 0 1

0 �Vdc 0

1

A
, Fc =

0

@
0 0

kpVref �1

Vdc 0

1

A
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