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Abstract—The switching behavior of power converters with
‘ideal’ electronic devices (EDs) makes it difficult to define a
switched model that describes the dynamics of the converter in
all possible operating conditions, i.e. a ‘complete’ model. Indeed
simplifying assumptions on the sequences of modes are usually
adopted, also in order to obtain averaged models and discrete–
time maps. In this paper we show how the complementarity
framework can be used to represent complete switched models of
a wide class of power converters, with EDs having characteristics
represented by piecewise–affine (even complicated) relations.
The model equations can be written in an easy and compact
way without the enumeration of all converter modes, eventually
formalizing the procedure to an algorithm. The complementarity
model can be used to perform transient simulations and time–
domain analysis. Mathematical tools coming from nonlinear pro-
gramming allow to simulate numerically the transient behavior
of even complex power converters. Also rigorous time–domain
analysis is possible without excluding pathological situations
like, for instance, inconsistent initial conditions and simultaneous
switchings. Basic converters topologies are used as examples to
show the construction procedure for the complementarity models
and their usefulness for simulating the dynamic evolution also
for non trivial operating conditions.

I. INTRODUCTION
Most power converters can be assumed to consist of linear

elements (resistors, inductors, capacitors), voltage and current
sources, and electronic devices (EDs) such as diodes and
electronic switches (thyristors, transistors, MOSFETs, etc.).
A typical way for modeling power converters consists of
assuming diodes and switches to be ‘ideal’, discriminating
among the different modes of the converter, building for each
mode a linear time–invariant dynamic model and determining
the conditions for the commutations among the different
modes [1], [2]. The resulting model is usually called a switched
model, which is the model structure used by several power
converters simulators such as PLECSTM by PLEXIM and
SymPowerSystemsTM by TheMathworks. Unfortunately, the
commutation conditions can depend on the state variables,
e.g. the so–called internally controlled commutations, and the
switched model eventually becomes rather complex also for

simple converter topologies [3], [4]. In general a switched
model that describes all possible operating conditions, in
the sequel indicated as a complete switched model, is very
difficult to be constructed for converters with more than
two EDs. However, by fixing the sequence of modes that
alternate due to the commutations of diodes and ideal switches,
simplified switched models and the corresponding averaged
models, pulse–width–modulation switch models and discrete–
time maps can be directly obtained [2], [5]–[9].
In this paper switched complementarity formalism is pro-

posed as a new perspective for obtaining complete switched
models of power electronics converters and for simulating
their behavior. Complementarity models have been proposed
as a framework for modeling (static) resistors–diodes–sources
(RDS) circuits, which include only linear resistors, indepen-
dent voltage and current sources and ideal diodes (IDs) [10],
[11]. More recently, switched complementarity systems have
been used to model (dynamic) switched electrical networks
that contain IDs and ideal switches (ISs) [4], [12], [13].
A preliminary contribution on complementarity models for
power converters was presented in [14]. The main idea for
the construction of a power converter complementarity model
consists of modeling the EDs characteristics separately from
the circuit in which they are used and then by integrating the
EDs representations with the dynamic equations of the circuit.
A similar approach is used for the Modified Nodal Analysis,
which is the modeling method chosen for the SPICE-like
simulators, such as PSpice [15], where EDs characteristics are
represented in details by means of nonlinear smooth algebraic
relations. Instead, in this paper, dealing with switched models,
the EDs are assumed to be ideal in the sense that their charac-
teristics are represented by possible switching piecewise–affine
relations, which is a classical assumption used for modeling
and simulation convenience [15]–[18]. In particular, in our
approach the power converter is represented as the feedback
interconnection of a linear time–invariant dynamic system Σd

representing the circuit topology, with a set of piecewise–
affine characteristics (ϕ,λ) representing the current–voltage
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characteristics of the EDs (see Fig. 1). A minimal state
space representation of Σd can be obtained by using classical
circuit theory methods, given the power converter [19]. The
nondecreasing piecewise–affine EDs characteristics are repre-
sented in the complementarity form by using RDS equivalent
circuits [20], [21]. The interesting feature of the proposed
representation is that, if Σd is passive, the representation
preserves the passivity of the closed loop system which is
a property that can be exploited for obtaining well–posedness
and stability results [22], [23]. The complementarity model
is simple to be built, captures all modes of the converter and
allows the idealization of the EDs characteristics at the desired
level of abstraction. In order to obtain an efficient time–
stepping simulation [24], [25], the proposed models can be nu-
merically integrated by exploiting already available algorithms
for the integration of switched complementarity models [26].
Time–domain analysis is possible even for complex power
converters and without excluding inconsistent initial conditions
and simultaneous switchings, situations that are difficult to be
managed with most of the existing simulation tools based on
switched models [27].
The paper is organized as follows. In Section II a pre-

liminary example for the illustration of the complementarity
modeling procedure is presented. In Section III it is shown how
given a piecewise–affine current–voltage characteristic of an
ED it can be constructed an equivalent RDS circuit and from
that a corresponding (static) complementarity representation.
The procedure is generalized for externally controlled EDs in
Section IV. In Section V it is shown how to integrate the ED
characteristics with the dynamic part of the converter in order
to obtain the switched complementarity model of the power
converter. The effectiveness of the proposed approach for
modeling and simulating power converters is demonstrated in
Section VI by considering a dc/dc boost converter and a three
phase inverter. By using PSpice as a reference for validation
of the results, it is also shown how the proposed approach
has some advantages compared to well known simulation
softwares based on switched models like PLECS. Section VII
points out some conclusions and directions for future research.

✛

Σd
✲

(ϕ, λ)

❥−
✻

λϕ

Fig. 1. The feedback representation of the complementarity model of a power
converter: Σd represents the dynamic part of the circuit and (ϕ, λ) the set of
characteristics of the EDs. The motivation for using a negative feedback loop
will be clarified in the sequel of the paper.

II. AN ILLUSTRATIVE EXAMPLE

In order to show a preliminary comparison between the clas-
sical and the complementarity switched modeling approaches,
consider the dc/dc boost converter depicted in Fig. 2. Assume
that ED1 is an ideal diode, i.e. i1 ! 0 and v1 = 0 if the ID

is conducting and i1 = 0 and v1 ! 0 if the ID is blocking.
(Note that the sign of the ID electrical variables is chosen so
that they take nonnegative values.) The electronic device ED2

is assumed to be the antiparallel connection of an electronic
switch and an ID, i.e. v2 = 0 and i2 ∈ R if ED2 is ON
(ED2 is bidirectional when ON), and (i2, v2) corresponding
to an ID characteristic if ED2 is OFF. A typical way of

e
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Fig. 2. Circuit scheme of a dc/dc boost converter.

modeling the converter consists of detailing all converter
modes corresponding to different states of the switches. When
ED2 is ON then ED1 is blocking (in usual operating conditions
x2 > 0 and thus when ED2 is ON v1 = x2 > 0) and one
can write Lẋ1 = −R1x1 + e. When ED2 is turned OFF, for
positive inductor current the diode ED1 will be conducting
and it follows Lẋ1 = −R1x1 − x2 + e. If the inductor
current x1 goes to zero the converter will start operating in
discontinuous conduction mode and the current will remain
identically zero until ED2 is turned ON again. The dynamics
of the capacitor voltage can be expressed as Cẋ2 = −x2/R2

when ED1 is blocking and as Cẋ2 = x1−x2/R2 when ED1 is
conducting. The described behavior can be simply formalized
by means of a switched model. In spite of the simplicity of the
behavior, also for this quite simple converter topology several
subtleties are hidden under the descriptive features of the
converter model. Indeed the description does not capture (or
excludes) several scenarios, e.g. inconsistent initial conditions
corresponding to a negative capacitor voltage. Furthermore, in
describing the behavior, some implicit reasonings have been
done: for example when the converter goes into discontinuous
conduction mode a negative inductor current is excluded
although in principle it could flow through the antiparallel
diode of ED2. Only by considering the whole dynamics,
together with constraints given by the variables of the switches,
it becomes evident that such situation has to be excluded. In
general, a complete switched model becomes rather complex
to be obtained also for simple converter topologies, and the
problem becomes more and more difficult when the number
of EDs increases.

Switched complementarity models are an interesting al-
ternative to classical approaches for determining a complete
switched model of a power converter. Consider again the
converter in Fig. 2. By applying the Kirchhoff laws it follows:
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Lẋ1 = −R1x1 − x2 + v1 + e (1a)

Cẋ2 = x1 −
1

R2
x2 + i2 (1b)

i1 = x1 + i2 (1c)
v2 = x2 − v1 (1d)

which must be satisfied independently of the commutations of
the EDs. In order to obtain a complete model, the equations
(1) must be integrated with the EDs characteristics (i1, v1)
and (i2, v2). The ideal EDs characteristics can be analytically
represented as

0 " v1 ⊥ i1 ! 0 (2a)
R ∋ i2 ⊥ v2 = 0, when switch ED2 is ON (2b)
0 " i2 ⊥ v2 ! 0, when switch ED2 is OFF, (2c)

where ⊥ is the orthogonality symbol, i.e. given two real
vectors z and w the notation z ⊥ w stands for zT w = 0
(the scalar product is zero), for notation simplicity ‘R ∋ i’
is sometimes used standing for ‘i ∈ R’, and ‘i ∈ R+’ or
‘i ! 0’ are equivalently used throughout the paper. Note
that conditions (2) imply that for each pair (i1, v1) and
(i2, v2) one of the two electrical variables must be zero. The
model (1)-(2) can be rewritten in the so–called switched cone
complementarity form

ẋ = Ax + Bz + Eu + g (3a)
w = Cx + Dz + Fu + h (3b)
C∗

π ∋ z ⊥ w ∈ Cπ (3c)

where x is the state vector, u is the vector of external inputs,
A, B, C, D, E, F , g and h are constant matrices, (z, w) are
the so–called complementarity variables [28]. In particular, for
the dc/dc boost converter x = [x1 x2]T , u = e, z = [v1 i2]T
and w = [i1 v2]T . The sets C∗

π and Cπ depend on the externally
controlled commutations: if ED2 is ON from (2a)-(2b) it
follows that C∗

π = R+×R and Cπ = R+×{0}, whereas if ED2

is OFF from (2a) and (2c) it follows C∗
π = Cπ = R+ × R+.

With the above positions (3) becomes a complete switched
model of the dc/dc boost converter. The model (3) captures
the converter behavior in all possible operating conditions. For
instance, assume that ED2 is OFF and that at a time instant say
t̄ the inductor current becomes zero. As it is well known such
condition determines the converter to operate in discontinuous
conduction mode. It is easy to show that having x1(t) < 0
for t ∈ (t̄, t̄ + ϵ1] and any ϵ1 > 0 is not possible for a
solution of the complementarity model (1)-(2) because some
of the constraints (2) are violated. Indeed, since x1(t̄) = 0,
in order to get a negative current one should have ẋ1(t) < 0
for t ∈ (t̄, t̄ + ϵ2] with some ϵ2 > 0. From (1a) and (1d)
it follows v2 = −Lẋ1 − R1x1 + e and if ẋ1 < 0 it is v2

strictly positive and from (2c) i2 = 0. Then from (1c) one has
i1 = x1 and the constraint (2a) contradicts the hypothesis of
having a negative current. Similar considerations can be done
for the other converter modes and for detecting inconsistent
initial conditions.

In the sequel we show that complete switched models of
a wide class of power converters can be represented in the
form (3). Note that in (3a)-(3b) all matrices are constant,
the internally controlled commutations are taken into account
by means of nonnegative inequality constraints in (3c), and
the externally controlled commutations determine a change in
the sets C∗

π and Cπ . When an ED is neither an ID nor an
IS, its current–voltage characteristic can be represented by
means of a more generic piecewise–affine relation. In that
case, in order to obtain a complementarity model (3) some
intermediate steps must be carried out. In particular, voltage
and current of the ED will not correspond to complementarity
variables. On the other hand, a different idealization of the EDs
characteristics should not affect the equations that describe
the circuit topology, e.g. (1). The EDs variables that appear
into the dynamic equations, e.g. v1 and i2 in (1a) and (1b),
will be considered as ‘inputs’ for the circuit model part and
indicated by using the symbol ϕ with suitable subscripts, see
the block Σd in Fig. 1. The other EDs variables, e.g. i1 and
v2, will be considered as ‘outputs’ for the circuit model part
Σd and denoted by λ. The representation of the (ϕ,λ) ED
characteristic will bring into the model the complementarity
variables z and w, and will allow to write the model in the
form (3). As a preliminary step towards the determination
of the switched cone complementarity model (3), in next
section we show how it is possible to obtain a complementarity
representation of a piecewise–affine (ϕ,λ) characteristic by
using equivalent RDS circuit representations.

III. COMPLEMENTARITY MODEL OF PIECEWISE–AFFINE
CHARACTERISTICS VIA RDS CIRCUITS

Throughout the paper we deal with EDs whose current–
voltage characteristics can be idealized by means of scalar
piecewise–affine nondecreasing characteristics. To elaborate
on this, let (ϕ,λ) be a pair of current and voltage, or vice
versa. Let us introduce first some useful definitions. The
(ϕ,λ) characteristic changes its slope at the so–called break-
ing points. Then the idealized ED characteristic is uniquely
defined by the initial slope σ0, the final slope σp and the
set of p breaking points {(Φj ,Λj), j = 1, . . . , p} with the
intermediate slopes σj , j = 1, . . . , p− 1. The slope of the jth
affine part of the characteristic will be

σj # Φj+1 − Φj

Λj+1 − Λj
, j = 1, . . . , p − 1. (4)

Since we deal only with nondecreasing characteristics we have
σj ! 0 for j = 0, 1, . . . , p. The slope can assume infinity as
a value. Moreover, from the definition of breaking point it
follows σj ̸= σj−1 for j = 1, . . . , p. The jth breaking point
is called a convex breaking point if σj > σj−1 and a concave
breaking point if σj < σj−1. In what follows we show that
any nondecreasing piecewise–affine relation between ϕ and
λ can be represented by an equivalent RDS circuit and then
parameterized by the complementarity variables z and w in
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the following complementarity form:

ϕ = asλ + bT
s z + gs (5a)

w = csλ + Dsz + hs (5b)
0 " z ⊥ w ! 0, (5c)

where as ≥ 0, bs ∈ Rp, gs ∈ R, cs ∈ Rp, Ds ∈ Rp×p,
hs ∈ Rp. The relation (5c) implies that for each pair of
complementarity variables at least one of them must be zero.
Each pair of complementarity variables (zj , wj) will represent
current and voltage of an ID appearing in the RDS circuit.
In our complementarity representation the number of comple-
mentarity variables, i.e. the length of the vectors z and w, is
equal to the number of breaking points of the characteristic.
As it will be shown in the sequel different RDS circuits can
equivalently represent the same (ϕ,λ) characteristic.

A. Nondecreasing single breaking point characteristics
The complementarity model (5) for the characteristic of

the so–called ideal diode (ID), see Fig. 3, can be simply
obtained. Indeed, such a (ϕ,λ) characteristic can be written
in the complementarity form (5) with ϕ = z and w = −λ,
i.e. as = 0, bs = 1, gs = 0, cs = −1, Ds = 0,
hs = 0 and 0 " z ⊥ w ! 0. The ID characteristic is a

λ

ϕ

λ
✲

✻

!
+

−

❄z

ϕ
✲

+

−
w

Fig. 3. Ideal diode symbol with the corresponding (ϕ, λ) current–voltage
characteristic and the indication of a possible pair of complementarity vari-
ables.

particular case of a piecewise–affine nondecreasing convex
characteristic, compare Fig. 3 and Fig. 4. By using the ID
behavior it is possible to show that the (ϕ,λ) characteristic
depicted in Fig. 4 represents the current–voltage characteristic
for the circuit shown in the same figure. Note that in [21]
the series of a resistor, an ID and a voltage source is called
a concave resistor. The (ϕ,λ) characteristic in Fig. 4 can be
represented by integrating both blocking and conducting states
of the ID into the following complementarity model:

ϕ = g0λ + z1 + Φ0 (6a)

w1 = −λ +
1
g1

z1 + Λ1 (6b)

0 ≤ z1 ⊥ w1 ≥ 0. (6c)

The model (6) can be explained by analyzing conducting
and blocking operating conditions of the ID. Since z1 ≥ 0,
from (6b) it follows that for λ < Λ1 it will be w1 > 0. Then it
must be z1 = 0 and the ID is blocking. Equation (6a) becomes
ϕ = g0λ+Φ0, which by choosing g0 # σ0 ! 0 is the equation
of the initial affine part of the characteristic. For λ > Λ1,
since w1 must be nonnegative, from (6b) it follows that z1

must be strictly positive and then the ID will be conducting,

i.e. w1 = 0. By substituting z1 obtained from (6b) in (6a)
we get ϕ = (g0 + g1)λ − g1Λ1 + Φ0. Then by choosing
g1 # σ1 − σ0 > 0 we get ϕ = σ1λ − (σ1 − σ0)Λ1 + Φ0

which is the equation of the affine part of the characteristic in
Fig. 4 with slope σ1. It can be shown that (6) is a complemen-
tarity representation of any piecewise–affine nondecreasing
and convex (ϕ,λ) characteristic with only one breaking point,
independently of what type of variables (current or voltage)
ϕ and λ are [29]. Therefore below, without loss of generality,
we assume that ϕ is a current and λ is a voltage, so as in
Fig. 4.

✲
ϕ

Φ0

+

−

1/g0λ ✍✌✎☞
❄

Λ1

1/g1

w1
❄z1

+

−

✻

✲
λ

ϕ

%
σ0

Λ1

σ1

Φ0
❝

Fig. 4. Piecewise–affine nondecreasing convex characteristic (ϕ, λ) with
a single breaking point and a corresponding RDS circuit; here 1/g0 and
1/g1 are resistances; Φ0 is the intersection of the initial affine part of the
characteristic with the ϕ-axis. The ID characteristic in Fig. 3 can be obtained
as a particular case with Φ0 = 0, Λ1 = 0, σ0 = g0 = 0 and σ1 = g1
infinite.

Consider the piecewise–affine nondecreasing concave single
breaking point characteristic in Fig. 5. By using the ID
behavior and arguments similar to those presented above, it
is simple to show that the (ϕ,λ) characteristic represents the
current–voltage characteristic for the circuit depicted in the
same figure. Note that in [21] the parallel of a resistor, an ID
and a current source is called a convex resistor. By applying
the KCL and KVL to the circuit the (ϕ,λ) characteristic can
be represented in the following complementarity form:

ϕ =
1

r0 + r1
(λ − r1z1 − Λ0 + r1Φ1) (7a)

w1 =
r1

r0 + r1
(λ + r0z1 − Λ0 − r0Φ1) (7b)

0 ≤ z1 ⊥ w1 ≥ 0, (7c)

where r0 # 1
σ0

! 0 and r1 # 1
σ1

− 1
σ0

> 0. By imposing
r0 = 0, Φ1 = 0, Λ0 = 0 and letting r1 → +∞, the model (7)
becomes the complementarity representation of an ID in which
ϕ = −z1 is the opposite of the nonnegative ID current and
λ = w1 is the nonnegative ID voltage.

✻

✲
λ

ϕ

!

σ0

Φ1

σ1

Λ0

❝
ϕ

λ

✲

+

−

r0

Λ0

r1

✛

w1

z1

+ −

Φ1

✍✌✎☞
✲

Fig. 5. Piecewise–affine nondecreasing concave characteristic (ϕ, λ) with a
single breaking point and a corresponding RDS circuit; here r0 and r1 are
resistances; Λ0 is the intersection of the initial affine part of the characteristic
with the λ-axis.
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B. Nondecreasing convex characteristics
Consider the piecewise–affine nondecreasing convex char-

acteristic in Fig. 6. All breaking points are convex and σj >
σj−1 ! 0 for j = 1, . . . , p. Fig. 6 represents the current–
voltage characteristic of the RDS circuit in Fig. 7, where p = 3
and

g0 # σ0 (8a)
gj # σj − σj−1, j = 1, . . . , p. (8b)

Note that g0 ! 0 and gj > 0 for j = 1, . . . , p, i.e. all
resistances in Fig. 7 are positive. The circuit topology can
be explained by noticing that the RDS circuit in Fig. 7 is
obtained from that in Fig. 4 by adding concave resistors in
parallel, one for each breaking point. For λ < Λ1 all IDs are
blocking; for Λ1 < λ < Λ2 the first ID is conducting and all
the other IDs are blocking; for Λ2 < λ < Λ3 the first two
IDs are conducting; and so on. In other words the jth ID will
be conducting if λ > Λj . Note that if the characteristic has
a final vertical piece, one has 1/gp = 0 and a shortcut will
replace the resistance in the pth concave resistor of the RDS
circuit in Fig. 7. By applying the KCL and KVL to the RDS

✻

✲
λ

ϕ

!
!

!σ0

Λ1

σ1

σ2

σ3

Λ3

Λ2

Φ0 ❝
Fig. 6. Piecewise–affine nondecreasing convex (ϕ, λ) characteristic with
p = 3 breaking points.

✲
ϕ

λ · · ·

+

−

Φ0✍✌✎☞
❄1/g0

Λ1

1/g1

w1
❄z1

+

−

Λ2

w2

1/g2

z2❄

+

−

Λp

1/gp

wp
❄zp

+

−

Fig. 7. A RDS circuit that has a piecewise–affine convex current–voltage
(ϕ, λ) characteristic. A pair of complementarity variables is associated to
each ID; 1/gj , j = 0, . . . , p are resistances.

circuit in Fig. 7 we get:

ϕ = g0λ +
p∑

k=1

zk + Φ0 (9a)

wj = −λ +
1
gj

zj + Λj , j = 1, . . . , p. (9b)

Moreover the IDs characteristics can be modeled as:

0 ≤ zj ⊥ wj ≥ 0, j = 1, . . . , p. (10)

The complementarity representation (9)-(10) of a piecewise–
affine nondecreasing convex (ϕ,λ) characteristic can be sim-
ply rewritten in the form (5).

C. Nondecreasing concave characteristics

Consider the nondecreasing concave (ϕ,λ) characteristic
shown in Fig. 8. All breaking points are concave then 0 "
σj < σj−1 for j = 1, . . . , p. The characteristic in Fig. 8
represents the current–voltage characteristic of the RDS circuit
in Fig. 9, where p = 3 and

r0 # 1
σ0

(11a)

rj # 1
σj

− 1
σj−1

, j = 1, . . . , p. (11b)

The RDS circuit is obtained from that in Fig. 5 by adding
convex resistors in series. For ϕ < Φ1 all IDs are conducting,
for Φ1 < ϕ < Φ2 only the first ID is blocking, and so on.
In other words, the jth ID will be blocking if ϕ > Φj . If the
characteristic has a final horizontal part, one has σp = 0 and
consequently rp is replaced by an open circuit. Note that in
this case if p > 1, the ID in the pth convex resistor requires a
different choice of the complementarity variables in order to
get a complementarity representation (see (13b) below).

✻

✲
λ

ϕ

!!

!
σ0

Φ1

σ1

σ2

σ3
Φ3

Φ2

Λ0

Fig. 8. Piecewise–affine nondecreasing concave (ϕ, λ) characteristic with
p = 3 breaking points; Λ0 is the intersection of the (continuation of the)
initial affine part (the one with slope σ0) with the λ-axis.

ϕ

λ

✲
· · ·

+

−

rp

✛

zp

wp

+ −

Φp

✍✌✎☞
✲

r0

Λ0

r1

✛

w1

z1

+ −

Φ1

✍✌✎☞
✲

rp−1

✛

wp−1

zp−1

+ −

Φp−1

✍✌✎☞
✲

Fig. 9. A RDS circuit that has a nondecreasing concave current–voltage
(ϕ, λ) characteristic.

Indeed by applying the KVL to the RDS circuit in Fig. 7
we get:

λ = r0ϕ +
p−1∑

k=1

wk + zp + Λ0. (12)

By applying the KCL at the different nodes of the circuit in
Fig. 7 we get:

wj = rjϕ + rjzj − rjΦj , j = 1, . . . , p − 1 (13a)

wp = −ϕ +
zp

rp
+ Φp. (13b)
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By substituting (13a) in (12) and solving for ϕ:

ϕ =
1

∑p−1
k=0 rk

λ −
∑p−1

k=1 rkzk + zp∑p−1
k=0 rk

+
∑p−1

k=1 rkΦk − Λ0∑p−1
k=0 rk

.

(14)
Note that

∑p−1
k=0 rk = 1/σp−1. Then (14) is well posed

provided that σp−1 is finite. The condition σp−1 being infinite
corresponds to a nondecreasing concave characteristic with
one breaking point and infinite slope of the initial part, i.e.
p = 1 and σ0 infinite. Such situation is already included in
the model (7) with r0 = 0. By substituting (14) in (13) we
get the complementarity model (5).

D. Nondecreasing characteristics
It is possible to construct now a complementarity model for

a generic piecewise–affine nondecreasing (ϕ,λ) characteristic,
defined by the set of breaking points, the initial slope and
the final slope. The breaking points set can be divided into
the sequences of consecutive convex and concave breaking
points. A sequence of consecutive convex (concave) breaking
points is also called a convex (concave) sequence. By using
a procedure similar to that presented above, to each convex
(concave) sequence one can associate an equivalent RDS
circuit. Then an RDS circuit having (ϕ,λ) as current–voltage
characteristic can be obtained by collecting and by connecting
the RDS circuits corresponding to the different breaking points
sequences. By using such circuit it is possible to formulate an
algorithm for the construction of a complementarity model of
any piecewise–affine nondecreasing characteristic, see [29] for
the details.
As example consider the piecewise–affine representation of

a diode characteristic shown in Fig. 10. The (ϕ,λ) characteris-
tic has two breaking points: (0, VB) is concave and (0, VF ) is
convex. The characteristic corresponds to the current–voltage
characteristic of the RDS circuit depicted in Fig. 11. The cir-
cuit is obtained by connecting the RDS circuit corresponding
to the concave breaking point (0, VB) (Fig. 5 with Λ0 = VB ,
r0 = 0, r1 replaced by an open circuit and Φ1 = 0) with
the RDS circuit corresponding to the convex breaking point
(0, VF ) (Fig. 4 with Φ0 = 0, g0 = 0, 1/g1 = RON and
Λ1 = VF ). By applying the KVL and KCL to the circuit
in Fig. 11 one can write

ϕ1 = −z1 (15a)
ϕ2 = z2 (15b)
w1 = λ1 − VB (15c)
w2 = −λ2 + RONz2 + VF (15d)
ϕ = ϕ1 + ϕ2 (15e)
λ = λ1 = λ2. (15f)

By substituting λ for λ1 and λ2 in (15c) and (15d), and
by using (15e) the complementarity model of the (ϕ,λ)
characteristic in Fig. 10 can be represented in the form (5)
with the following matrices:

as = 0, bT
s =

[
−1 1

]
, gs = 0, (16a)

cs =
[

1
−1

]
, Ds =

[
0 0
0 RON

]
, hs =

[
−VB

VF

]
. (16b)

Note that two pairs of complementarity variables are needed

ϕ

λ
✲

✻

VF

VB

1
RON

iD

vD

✲

✻

VF

VB

Fig. 10. Current–voltage characteristic of a diode and a corresponding
idealized piecewise–affine characteristic: VB is the breakdown voltage and
VF is the forward voltage.

λ = λ2

✲

VF

ϕ

RON

w2
❄z2

❄ϕ2+

−

+

−

z1

w1 VB

✲ϕ1

λ1

✛

+ −
+ −

Fig. 11. RDS circuit corresponding to the piecewise–affine diode character-
istic in Fig. 10.

in order to represent the piecewise–affine diode characteristic
in Fig. 10 whereas only one pair of complementarity variables
is enough for the ID. The motivation for that is on the
number of breaking points of the two characteristics. In general
different complementarity representations can be obtained with
a different choice of the z and w variables.

IV. CONE COMPLEMENTARITY MODELS FOR SWITCHING
ELECTRONIC DEVICES

In the analysis above we have considered only uncontrolled
EDs. In order to represent the characteristics of switching
EDs, i.e. EDs whose state can be forced ON and OFF,
we need to generalize the model (5) in the so–called cone
complementarity form. Introduce first the complementarity
model of the ideal switch (IS). Without loss of generality,
let zIS be the voltage across the switch and wIS the current
through the switch. The behavior of an IS can be represented
with zIS = 0 and wIS ∈ R if the IS is ON, and zIS ∈ R and
wIS = 0 if the IS is OFF, see Fig. 12. Such relations can be
rewritten in the following form

K∗
π ∋ zIS ⊥ wIS ∈ Kπ (17)

where π = 1 if IS is ON, π = −1 if IS is OFF, and we define
the following sets

K0 = K∗
0 = R+, (18a)

K1 = R, K∗
1 = {0}, (18b)

K−1 = {0}, K∗
−1 = R, (18c)

The sets K0, K1 and K−1 are cones and the sets K∗
0 , K∗

1

and K∗
−1 are the corresponding dual cones [12]. The novelty

of (17) with respect to the complementarity condition (5c)
is that the IS model can also represent the commutations by
means of the switching function π which can be time–varying.
Moreover the model (17) includes also the representation of
an ID, which can be obtained by choosing a constant π = 0.
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wIS

zIS

✲

✻

IS OFFIS ON

wIS

zIS

✲

✻
❄wIS

zIS

+

−

Fig. 12. Ideal switch with the complementarity variables and the corre-
sponding characteristics in ON and OFF states. Note that, so as for the ID,
the complementarity variables zIS and wIS are chosen with the source sign
convention.

By using the IS device it is possible to model in the cone
complementarity framework any ED whose current–voltage
characteristics in the ON and OFF states are representable in
a piecewise–affine form. Say (ϕON,λON) the characteristic of
the ED when ON and (ϕOFF,λOFF) when OFF. Consider the
circuit in Fig. 13 where ϕ is the current and λ is the voltage
of the ED to be modeled. Two ISs are used and their states are
controlled so that for each state of the ED only one leg of the
parallel determines the ED behavior. When the ED is ON, one
has to assign IS1 ON (π1 = 1) and IS2 OFF (π2 = −1), so
that the characteristic (ϕ,λ) is represented by the equivalent
impedance ξON, i.e. ϕ = ϕON and λ = λON. Vice versa if the
ED is OFF one fixes IS1 OFF (π1 = −1) and IS2 ON (π2 = 1),
so that ϕ = ϕOFF, λ = λOFF and the characteristic of the ED
is represented by the equivalent impedance ξOFF. Then for any
state of the ED we can write

ϕ = wIS1 + wIS2 (19a)
wIS1 = ϕON = aONλON + bT

ONzON + gON

= aONλ + aONzIS1 + bT
ONzON + gON (19b)

wIS2 = ϕOFF = aOFFλ + aOFFzIS2 + bT
OFFzOFF + gOFF (19c)

wON = cONλ + cONzIS1 + DONzON + hON (19d)
wOFF = cOFFλ + cOFFzIS2 + DOFFzOFF + hOFF. (19e)

Equations (19) can be rewritten in the form

ϕ = asλ + bT
s z + gs (20a)

w = csλ + Dsz + hs (20b)
C∗

π ∋ z ⊥ w ∈ Cπ, (20c)

where

zT =
[
zIS1 zIS2 zON zOFF

]
(21a)

wT =
[
wIS1 wIS2 wON wOFF

]
(21b)

as = aON + aOFF, bT
s =

[
aON aOFF bT

ON bT
OFF

]
, (21c)

gs = gON + gOFF, (21d)

cs =

⎡

⎢⎢⎣

aON
aOFF
cON
cOFF

⎤

⎥⎥⎦ , hs =

⎡

⎢⎢⎣

gON
gOFF
hON
hOFF

⎤

⎥⎥⎦ , (21e)

Ds =

⎡

⎢⎢⎣

aON 0 bT
ON 0

0 aOFF 0 bT
OFF

cON 0 DON 0
0 cOFF 0 DOFF

⎤

⎥⎥⎦ , (21f)

Cπ = Kπ1 ×K∗
π1

× RpON
+ × RpOFF

+ , (21g)
C∗

π = K∗
π1

×Kπ1 × RpON
+ × RpOFF

+ (21h)

with π1 = 1 (π2 = −1) if the ED is ON and π1 = −1
(π2 = 1) if the ED is OFF, pON and pOFF being the numbers of
breaking points (and IDs) for the (ϕON,λON) and (ϕOFF,λOFF)
characteristics, respectively. The representations of both states
of the ED (ON and OFF) are now included in (20).
If the ED behaves as a shortcut when ON (as an open

circuit when OFF, respectively) the circuit in Fig. 13 can be
simplified to the parallel (series) connection of an IS with the
equivalent impedance of the OFF (ON) phase. If ϕ is a voltage
and λ is a current one can obtain the cone complementarity
representation by using dual circuits [29]. It should be noticed

λ

−

+

−

✲
ϕ

+

+

−
ξONλON

ϕON

❄
zIS1

wIS1

+

−

❄

ξOFFλOFF

ϕOFF

❄
zIS2

wIS2

+

−

❄

Fig. 13. Circuit for the complementarity representation of the current–voltage
characteristics of a switching ED. The RDS circuits corresponding to the
characteristics in the ON and OFF states are represented by the equivalent
impedances ξON and ξOFF , respectively.

that by exploiting the specific ED characteristic it is possible
to obtain representations that involve a lower number of com-
plementarity variables. Moreover there exist some changes of
the characteristics of ξON and ξOFF that affect only the vectors
gs and hs in the representation (20). In particular this is the
case for variations of the characteristic such that the number of
breaking points and the slopes of each sequence of breaking
points do not change. That could be useful to prove robust
stability under specific uncertainties of the characteristics.

V. COMPLEMENTARITY MODELS FOR POWER CONVERTERS
In the previous analysis we have shown that any switching

piecewise–affine characteristic of an ED can be represented in
the cone complementarity form (20) where (ϕ,λ) is the pair of
current and voltage (or vice versa) of the device and (z, w) is
the pair of vectors of the complementarity variables associated
to that device. In the first part of this section we show how,
given the representations of the EDs of a power converter, it
is possible to obtain the representation of the entire converter.
In the second part of the section a possible approach for the
numerical integration of the model is presented.

A. Switched cone complementarity model
Consider current and voltage on each ith ED as an input

ϕdi or as an output λdi for the remaining part of the circuit
which represents the dynamic part of the system. We assume
for the sign of voltage and current on the EDs the convention
used for sources. Such choice is important to check passivity
of the dynamic model of the converter with respect to the
input ϕd and the output λd [23]. On the other hand, since the
typical voltage and current sign convention chosen for the ED
characteristic representation is the opposite, i.e. the one used
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for passive components, that motivates the negative feedback
in Fig. 1 which can be now more specifically represented so
as shown in Fig. 14 and with a different representation in
Fig. 15. The circuit obtained by extracting Ns EDs, which will
consist of linear elements (resistors, inductors and capacitors)
and external sources, under very general assumptions [19], can
be described by the state-space system

ẋ = Adx + Bdϕd + Edu (22a)
λd = Cdx + Ddϕd + Fdu (22b)

where x is the state vector, u denotes the external sources,
ϕd and λd are vectors with Ns components, and (ϕsi ,λsi) =
(−ϕdi ,λdi) represents the characteristic of the ith ED. Note
that possible state reduction, e.g. a three phase converter
with currents equilibrium on the ac side, can be handled
at this modeling stage following the typical approach used
for classical state space representations of power electronics
systems.
Now collect the complementarity models (20) of the Ns

EDs of the power converter into the following cone comple-
mentarity model:

ϕs = Ãsλs + B̃sz + g̃s (23a)
w = C̃sλs + D̃sz + h̃s (23b)
C∗

π ∋ z ⊥ w ∈ Cπ (23c)

Cπ =
Ns∏

i=1

(
Kπi ×K∗

πi
× RpONi

+ × RpOFFi
+

)
(23d)

where ϕs ∈ RNs , λs ∈ RNs , Ãs ∈ RNs×Ns , B̃s ∈ RNs×p̃

with p̃ =
∑Ns

i=1(2 + pONi + pOFFi), g̃s ∈ RNs , C̃s ∈ Rp̃×Ns ,
D̃s ∈ Rp̃×p̃, h̃s ∈ Rp̃. The matrices above are given by

Ãs = diag {asi} ≥ 0 i = 1, . . . , Ns (24a)

B̃s =

⎡

⎢⎢⎢⎣

bT
s1

0 · · · 0
0 bT

s2
· · · 0

...
...

. . .
...

0 0 · · · bT
sNs

⎤

⎥⎥⎥⎦
(24b)

g̃s = col {gsi} i = 1, . . . , Ns (24c)

C̃s =

⎡

⎢⎢⎢⎣

cs1 0 · · · 0
0 cs2 · · · 0
...

...
. . .

...
0 0 · · · csNs

⎤

⎥⎥⎥⎦
(24d)

D̃s = diag {Dsi} i = 1, . . . , Ns (24e)
h̃s = col {hsi} i = 1, . . . , Ns (24f)

where ‘diag’ indicates block diagonal matrices and ‘col’
indicates matrices obtained by appending in a unique column
several scalars or column vectors. By using ϕd = −ϕs and
λd = λs (see the feedback scheme in Fig. 14) and by
substituting (23a) in (22) one obtains:

ẋ = Adx − Bd

[
Ãsλd + B̃sz + g̃s

]
+ Edu (25a)

λd = Cdx − Dd

[
Ãsλd + B̃sz + g̃s

]
+ Fdu (25b)

w = C̃sλd + D̃sz + h̃s. (25c)

u

✲

✲

ϕs

ẋ = Adx + Bdϕd + Edu
λd = Cdx + Ddϕd + Fdu

✻

ϕs = Ãsλs + B̃sz + g̃s

w = C̃sλs + D̃sz + h̃s

C∗
π ∋ z ⊥ w ∈ Cπ

✛

λd

❥−
ϕd

λs

Fig. 14. Feedback structure for the switched cone complementarity model
of a power electronic converter.

ϕd1✲
ϕs1

ϕs2

λs2

ED2
ϕd2

✛

✻

ED1λs1

+

−

❄

−

+
λd1

λd2

+

− +

−

Fig. 15. Block scheme of the power electronic converter with ‘external’
electronic devices. For simplicity external sources are not shown.

By looking at (25b) if the matrix DdÃs has no eigenvalues
in −1, the matrix M # I +DdÃs ∈ RNs×Ns is invertible and

λd = M−1
[
Cdx − DdB̃sz − Ddg̃s + Fdu

]
. (26)

Note that being M singular, it means that the feedback
structure has an algebraic loop not solvable and we get an
ill-posed problem. In the case Dd > 0 and Ãs ! 0, the
matrix M = (I + DdÃs) is invertible [30]. The same can
be proved if Dd ! 0 and Ãs ! 0 and diagonal [29], which
is the case for the proposed complementarity model (Dd ! 0
follows from passivity of Σd and Ãs ! 0 from (24a) because
the EDs characteristics are assumed to be nondecreasing). By
using (26) after some algebra the equations (25a) and (25c)
can be written in the switched cone complementarity form (3),
which is here repeated for the sake of readability:

ẋ = Ax + Bz + Eu + g (27a)
w = Cx + Dz + Fu + h (27b)
C∗

π ∋ z ⊥ w ∈ Cπ (27c)

with the cones given by (23d) and

A := Ad − BdÃsM
−1Cd, (28a)

B := BdÃsM
−1DdB̃s − BdB̃s, (28b)

C := C̃sM
−1Cd, (28c)

D := D̃s − C̃sM
−1DdB̃s, (28d)

E := −BdÃsM
−1Fd + Ed, (28e)

F := C̃sM
−1Fd, (28f)

g := BdÃsM
−1Ddg̃s − Bdg̃s, (28g)

h := h̃s − C̃sM
−1Ddg̃s. (28h)

It is interesting to note that the converter scheme in Fig. 14 can
be also used if there are no dynamic elements (inductors and
capacitors) into the circuit, i.e. the state dimension is zero and
the matrices Ad, Bd, Ed and Cd disappear. Such circuits are
typically used to describe basic topologies of power electronics
converters, e.g. a single phase full bridge rectifier with diodes,
an ideal sinusoidal voltage source and an ideal current source
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as a load. These configurations, which can be also part of more
complex circuits, cannot be simply modeled and simulated
with tools that use switched models of power converters [31].

B. Numerical integration
The switched cone complementarity model (27) can be used

for the simulation of the power converter dynamic behavior.
In order to obtain the numerical integration of (27), the
continuous–time model (27a) can be discretized by using
classical techniques for the integration of linear differential
equations. For instance, the discretization of (27a) with the
backward Euler method leads to

xk = (I − Aθ)−1(xk−1 + Bθzk + Eθuk + gθ), (29)

where k represent the discrete time variable and θ is the
sampling period. Moreover the sampled version of (27b) can
be written as

wk = qk + M̄zk (30)

with

qk = C(I − Aθ)−1(xk−1 + Eθuk + gθ) + Fuk + h, (31a)
M̄ = D + C(I − Aθ)−1Bθ. (31b)

At each time step, given xk−1 and uk, the vector qk is
known and also the state πk of the externally controlled
switches is known. Then one can solve the following cone
complementarity problem: given qk, M̄ and πk find zk such
that C∗

πk
∋ zk ⊥ wk ∈ Cπk with wk given by (30) [13].

Such type of integration algorithm can be simplified so that
a lower number of complementarity variables is considered
at each integration step. Assume the ith ED is ON. The
complementarity variables used for the representation of the
OFF characteristic of the ED do not influence the relation
between ϕ and λ (see Fig. 13), then do not affect the converter
behavior. The model (19) reduces to

ϕ = aONλ + bT
ONzON + gON (32a)

wON = cONλ + DONzON + hON (32b)

with 0 " zON ⊥ wON ! 0. An analogous representation can
be obtained from (19) when ED is OFF. Therefore at each
step, given the states of the externally controlled EDs, one can
select the complementarity representation (5) for the specific
ED state (ON or OFF) and use only those matrices in (24). The
meaning (and also the size) of the complementarity variables
z and w change when external commutations of EDs occur,
though ϕ and λ preserve their physical meanings as current
and voltage, or vice versa. By selecting at each step the
representations of the EDs corresponding to the ON or OFF
states, the original cone complementarity system becomes a
linear complementarity system. Then one can compute the
matrices (28) and by using (31) solve the following linear
complementarity problem: given qk and M̄ find zk such that
0 " zk ⊥ wk ! 0 (because only constraints in the form (5c)
are now considered). The numerical integration is simplified
because linear complementarity problems can be efficiently
solved [29], [32], [33].

VI. SIMULATION RESULTS

In this section by considering as examples a dc/dc boost
converter and a three phase inverter we show the potentialities
of the complementarity framework for modeling and simulat-
ing power converters.

A. Dc/dc boost converter
Consider the dc/dc boost converter in Fig. 2. From the

circuit topology, using (1a)-(1d) the converter can be repre-
sented in the form (22a)-(22b) with x = [x1 x2]T , u = e,
ϕd = [v1 i2]T , λd = [i1 v2]T and the following matrices

Ad =
[
−R1

L − 1
L

1
C − 1

R2C

]
, Bd =

[
1
L 0
0 1

C

]
, Ed =

[
1
L
0

]
, (33a)

Cd =
[
1 0
0 1

]
, Dd =

[
0 1
−1 0

]
, Fd =

[
0
0

]
. (33b)

Assuming ED1 to be an ID one can write

ϕs1 = −ϕd1 = −z1, λs1 = λd1 = w1, (34a)
0 " z1 ⊥ w1 ! 0. (34b)

Assume ED2 an antiparallel connection of an ID and a
electronic switch:

ϕs2 = −ϕd2 = −z2, λs2 = λd2 = w2, (35a)
K∗

π ∋ z2 ⊥ w2 ∈ Kπ, (35b)

where π = −1 if the switch ED2 is ON and π = 0 if the switch
ED2 is OFF, see (18). The matrices of the model (23) can
be simply obtained from (34a) and (35a); the cones in (27c)
will be C∗

π = R+ × K∗
π and Cπ = R+ × Kπ with π = −1

if ED2 is ON and π = 0 if ED2 is OFF. Using (28) it is
simple to achieve the complementarity representation (27) for
the converter under investigation. In particular it will be A =
Ad, B = Bd, C = Cd, D = Dd, E = Ed, F = Fd, g = 0
and h = 0, which can be simply verified to be equal to the
model presented in Section II.
Consider the following parameters: e = 5 V, R1 = 0.1 Ω,

L = 0.2 mH, R2 = 20 Ω, C = 40 µF. Moreover an open
loop pulse width modulation of ED2 with a period equal to
100µs and a duty cycle equal to 0.5 is considered. Fixed step
numerical integrations with different sampling periods have
been implemented. At each time step the linear complemen-
tarity problem is solved by using the Lemke algorithm [32],
which for low order problems is usually faster than the PATH
algorithm [33]. Time evolutions of the state variables are
depicted in Fig. 16. Similar results are also obtained by using
the PLECS tool. Table I shows a comparison of the numerical
results assuming the PSpice results as the ‘real’ evolutions.
The time required for the complementarity model numerical
integration is larger than the time required for the simulation
when using PLECS or PSpice. However the integration of
the complementarity model is obtained by using standard
Matlab code: code optimization and computational burden
minimization are out of the scope of this work. The interesting
result is that by decreasing the sampling period almost the
same rate of improvement is obtained both with PLECS
and the integration of the complementarity model. Also, the
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comparison with the PSpice simulation results demonstrate the
reliability of the complementarity model. The complementarity

TABLE I
COMPARISON OF THE DC/DC BOOST CONVERTER SIMULATION RESULTS.

Sampling period θ 1 µs 0.5 µs 0.1 µs
PSpice simulation time 0.97 s 1.56 s 6.40 s
Compl. simulation time 1.22 s 2.39 s 11.7 s
PLECS simulation time 0.12 s 0.23 s 0.98 s

Compl. rms error 0.067 A
0.18 V

0.033 A
0.088 V

0.0064 A
0.018 V

PLECS rms error 0.060 A
0.20 V

0.030 A
0.098 V

0.0059 A
0.020 V

model can be used to simulate the power converter behavior
also in the presence of inconsistent initial conditions. By
assuming x2(0) = −2 the simulation results are shown in
Fig. 17 and the corresponding error with respect to PSpice in
Fig. 17. At the first step the integration of the complementarity
model determines the state jump from the inconsistent initial
condition to a consistent value of the capacitor voltage [34].
Note that the PLECS simulation is stopped at the first inte-
gration step and an error message due to the negative initial
capacitor voltage is generated. It should be stressed that for the
numerical integration of the power converter complementarity
model, differently from the integration techniques that use
classical switched models [31], [35], it is not necessary to
enumerate and compute the models of the different modes
of the converter which are embedded in the complementarity
model by means of the constraints on the complementarity
variables.
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Fig. 16. Inductor current and capacitor voltage starting from x1(0) = 1 A
and x2(0) = 2 V.
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Fig. 17. Inductor current and capacitor voltage with x1(0) = 1 A and
x2(0) = −2 V.
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Fig. 18. Voltage (top) and current (bottom) error between the complemen-
tarity and the PSpice results.

B. Three phase converter
Consider the three phase converter in Fig. 19. From the

circuit topology and using the KVL and KCL after some
algebra, by defining x = [ xC xL xr xs ]T (note that
xt = −xr − xs) and u = [ e er es et ]T , the converter
can be represented in the form (22a)-(22b) with

Ad = −R

L

⎡

⎢⎢⎣

L
RRCC − L

RC 0 0
L

RLf

LRf

RLf
0 0

0 0 1 0
0 0 0 1

⎤

⎥⎥⎦ , (36a)

Bd = − 1
3L

⎡

⎢⎢⎣

3L
C

3L
C

3L
C 0 0 0

0 0 0 0 0 0
0 0 0 2 −1 −1
0 0 0 −1 2 −1

⎤

⎥⎥⎦ , (36b)

Ed =
1

3L

⎡

⎢⎢⎣

0 0 0 0
3L
Lf

0 0 0
0 2 −1 −1
0 −1 2 −1

⎤

⎥⎥⎦ , (36c)

Cd =

⎡

⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0
−1 0 0 0
−1 0 0 0
0 0 −1 0
0 0 0 −1
0 0 1 1

⎤

⎥⎥⎥⎥⎥⎥⎦
, (36d)

Dd =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦
, (36e)

and Fd is zero. In order to obtain the comple-
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Fig. 19. Three phase power converter with input filter.
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mentarity model (27) one must now insert the EDs
characteristics. For instance, if the EDs are all IDs,
since ϕs = −ϕd and λs = λd, by choosing
z = [ ϕs1 ϕs2 ϕs3 −ϕs4 −ϕs5 −ϕs6 ]T and w =
[ −λs1 −λs2 −λs3 λs4 λs5 λs6 ]T it is straightfor-
ward to obtain the matrices of (20) and using (28) the
complementarity representation (27) with Cπ = C∗

π = R6
+.

Note that if the EDs of the converter are modeled as IDs,
the resulting matrix D = Dd is skew symmetric, i.e. D +
DT = 0. Instead if the EDs are diodes modeled by using
the equivalent piecewise–affine characteristic in Fig. 10 it is
simple to check that D + DT > 0, whereas Dd + DT

d is still
zero because depends only on the circuit topology and not on
the specific EDs characteristics. It is possible to show that for
any power converter model the matrix D is skew symmetric
when, by considering all converter capacitors (inductors) as
shortcut (open circuits), i.e. with the initial conditions of the
corresponding state variables set to zero, there will not exist
any dissipation path into the resulting equivalent circuit. If the
power diode is represented by means of the equivalent circuit
in Fig. 11, independently of the converter in which the diode
is included, it will exist at least the dissipation path including
RON and VB .
Consider the following circuit parameters: R = 1 Ω, L =

100 mH, Rf = 2 Ω, Lf = 10 mH, Cf = 10 mF, RC = 10 kΩ.
Moreover consider the inputs e = 300 V, er = Ae sin(2πfet),
es = Ae sin(2πfet − 2π/3), et = Ae sin(2πfet − 4π/3) with
Ae = 100 V and fe = 48 Hz. The EDs are assumed to be the
antiparallel connection of an electronic switch and an ID. A
square wave modulation with a frequency of 50 Hz is fixed.
Figs. 20-21 report the state variables time evolution. After
0.5 s it is simulated a failure: the third leg is completely
disconnected. Such situation is simply simulated by fixing
different matrices for the ED models, i.e. open circuits, at the
failure time instant. Then at 0.7 s the third phase is connected
again. At 1 s a three phase shortcut on the third leg occurs and
the first two legs are no more forced, i.e. EDi for i = 1, 2, 4, 5
behave as IDs and for i = 3, 6 are shortcuts. The capacitor
voltage xC goes to zero instantaneously and the inductor
current goes to e/Rf = 150 A with the dynamics of the first
order system given by Rf and Lf , see Fig. 22. Note that the
(ideal) state discontinuity of the capacitor voltage is simulated
without problems by the complementarity model (see [34] for
the explicit computation of state discontinuities in switching
circuits).
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Fig. 20. Currents xr , xs and xt of the three phase converter.
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Fig. 21. Capacitor voltage xC and inductor current xL of the three phase
converter.
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Fig. 22. Capacitor voltage xC and inductor current xL of the three phase
converter. Note the different vertical time scale with respect to the previous
figure.

Up to 0.5 s a performance comparison with the PSpice and
PLECS simulations confirm the considerations done for the
case of the boost converter results. On the other hand the
situations generated at 0.5 s and at 1 s determine inconsistent
states which cannot be simulated by using PLECS.

VII. CONCLUSION

Complementarity formalism has been proposed as a frame-
work for representing complete switched model of power con-
verters and for their time–domain analysis. The complemen-
tarity model can be constructed without explicitly detailing all
modes of the converter and by representing the piecewise–
affine current–voltage characteristics of the electronic devices
(EDs) at the desired level of abstraction. A general procedure
for the construction of the complementarity model has been
presented. We have shown that any piecewise–affine relation
can be represented by means of an equivalent resistors–diodes–
sources (RDS) circuit in which an ideal diode is associated to
each change of slope of the characteristic. The RDS circuit
allows to determine a static complementarity model of the ED
characteristic and the use of ideal switches generalizes the
RDS circuits also for EDs with externally controlled commu-
tations. A feedback structure of the converter topology model
with the complementarity models of the devices characteristics
leads to the final switched cone complementarity model of the
power converter. A dc/dc boost converter and a square wave
inverter have been presented as examples in order to illustrate
the potentialities of the complementarity models for time–
domain analysis and for the numerical simulation of power
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converters behaviors also in the presence of inconsistent state
conditions.
The use of the complementarity formalism opens interest-

ing new frontiers for the modeling and formal analysis of
power electronics converters. For instance, by combining the
complementarity model with the passivity concept one can
prove existence, uniqueness and stability of solutions of power
converters. In [36] the complementarity model has been used
for computing steady state solutions of a simple converter
topology. That could represent the basis for the use of the
complementarity framework for frequency–domain analysis of
converters, which is a direction of future research. Moreover,
the proposed approach can be used for modeling other classes
of nonlinear circuits, e.g. sensing circuits containing elements
such as thermistor and bridges. On the other hand, although
the complementarity formalism is valid also for controlled
converters, it is not easy to predict how the complementarity
formalism might help for the power converters control design.
The main difficulty is that the power converters control acts
on the model indexes of the switching set, i.e. the cones
at which the complementarity variables belong. Overall, the
complementarity framework seems to be useful to tackle, in a
future research, a wide range of different topics with practical
interest in power electronics.
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