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Abstract

High-frequency dither signals are commonly used to implement modulation schemes in
power electronics converters. These systems represent an interesting class of hybrid sys-
tems with external excitation. They have a rich dynamical behaviour, which cannot be
easily understood intuitively. Despite the common use of averaging techniques in power
electronics, it was only recently proved that a dithered hybrid system can be approximated
by an averaged system under certain conditions on the dither signal. Averaging and aver-
aged models for various types of power converters are analyzed in the paper. It is shown
that the averaged nonlinearity depends on the dither shape and that dither signals with
Lipschitz-continuous averaged nonlinearities can be used to adapt the equivalent gain of
power converters. Practical stability of the original dithered system can be inferred by an-
alyzing a simpler averaged system. The main contribution of the paper is to show that the
averaged and the dithered systems may have drastically different behavior if the assump-
tions of the recently developed averaging theory for dithered hybrid systems are violated.
Several practical experiments and simulation examples of power electronics converters are
discussed. They indicate that the conditions on the dither signal imposed by the averaging
theory are rather tight.
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1 Introduction

Many power electronics systems have switching devices that more or less instanta-
neously change the dynamics of the system. Ideal models of diodes and controlled
switches give rise to a class of hybrid dynamical systems, which consist of differ-
ential equations with discontinuous nonlinearities and external excitation signals.
The understanding of the dynamical behavior of these systems is important to en-
able the design of more robust and efficient power converters, e.g., (Kassakian et
al., 2001; Banerjee and Verghese, 2001).

Detailed analysis of hybrid models of power converters is difficult due to potentially
complex interaction between the nonsmooth dynamics and the external carrier sig-
nal. Such signal, which is here interpreted as the dither, determines the commuta-
tions of the switches by means of a comparison with a suitable modulation signal.
A possible approach to circumvent some of the difficulties is to average the hy-
brid dynamics over the period of the carrier signal. If the dither is of sufficiently
high frequency, the behavior of the averaged system will often be close to the orig-
inal system. Although the averaging approach is widely used in practice (Mohan et
al., 1995), only recently rigorous averaging analysis was introduced, e.g., (Lehman
and Bass, 1996). For a general class of Lipschitz-continuous systems, the aver-
aging approach was theoretically justified by Zames and Shneydor already in the
1970s (Zames and Shneydor, 1976; Zames and Shneydor, 1977). They considered
a class of feedback systems with linear dynamics and Lipschitz-continuous static
nonlinearities excited by a dither signal, and showed that the amplitude distribu-
tion function of the dither plays a key role in understanding the stabilizing effect
of the dither on the closed-loop system. The assumption on Lipschitz continuity
posed by Zames and Shneydor is however often violated in practice; for example,
that is the case for several power converters controlled using pulse width modula-
tion. Results were recently obtained on averaging and stability for dithered systems
with nonsmooth dynamics (Gelig and Churilov, 1998; Iannelli et al., 2003; Teel et
al., 2004; Iannelli et al., 2006). When the dynamics are nonsmooth, it seems like
there is a considerably smaller class of dither signals that can be used, compared
to the smooth case considered by Zames and Shneydor. For instance, the averaging
result in (Iannelli et al., 2006) requires the averaged system to be Lipschitz contin-
uous, which, in the case of nonsmooth dynamics, in general means that the dither
should have Lipschitz-continuous amplitude distribution function.

The main contribution of this paper is to show that when certain conditions on the
carrier signal in power converters are violated, then averaging may fail to predict
the correct system behavior. This finding is illustrated through a number of ex-
amples, by simulated models of DC/DC and three-phase converters as well as by
two experimental set-ups of DC/DC converters. The results show the importance
of some mathematical details behind the averaging theory: the sufficient condi-
tions on the dither, first presented in (Iannelli et al., 2006), are rather tight, and
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disregarding them could have a dramatic effect on the accuracy of the averaging.
It is also indicated how averaging can be used to infer rigorous practical stability
of the dithered system by analyzing the simpler averaged system, cf., (Gelig and
Churilov, 1998; Moreau and Aeyels, 2000; Iannelli et al., 2003).

The outline of the paper is as follows. Section 2 presents four common types of
switched power converters. They can all be represented as a particular class of
hybrid systems with external dither excitation. Section 3 presents some background
on the averaging for this class of hybrid systems. Practical stability results on the
dithered system derived by assuming exponential stability of the averaged system
are presented in Section 4. How to choose the shape of the dither is discussed
in Section 5. Disregarding certain conditions on the dither signal can give rise to
interesting dynamical phenomena, which are discussed in Section 6. They can also
be verified in reality, so Section 7 confirms the theory through power converter
experiments. The paper is concluded in Section 8 with some future directions.

2 A hybrid model for a class of switched power converters

This section considers switched power converters composed of linear passive elec-
trical components (resistors, inductors, capacitors), independent voltage and cur-
rent sources, and ideal diodes, transistors, and thyristors. As examples DC/DC buck
and boost converters, an H-bridge drive, and a three-phase converter are discussed.
The section is concluded by showing that these converters, when operating in con-
tinuous conduction mode, can be modeled using the same class of hybrid models.

2.1 DC/DC buck converter

The circuit diagram of a voltage-mode controlled buck converter is reported in
Fig. 1. The purpose of this converter is to reduce the input voltage v to a desired
output value, say xref2 , without large energy losses. By choosing as state variables the
inductor current x1, the capacitor voltage x2 and the output x3 of the integral block
of the controller, the dynamic model of the converter under continuous conduction
mode (i.e., the current through the inductor is assumed to be always positive) can
be represented as

ẋ(t) = A0x(t)+b0r(t)+b1v(t) n(kpr(t)− cx(t)−δ(t)) (1)
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Fig. 1. DC/DC buck converter under voltage-mode control: S represents an ideal switch, D
is an ideal diode, δ is the dither signal, and k1,k2,kp,ki are the control parameters.
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where k1 and k2 are the state feedback gains, r= k2xref2 , kp and ki are the gains of the
proportional and integral terms of the controller, respectively, and δ is the periodic
carrier signal (typically, a sawtooth signal). The step nonlinearity n is given by

n(z) =

{

1, z> 0
0, z< 0,

(2)

and the switch S is assumed to be a short circuit (and D an open circuit) if n(z) = 1
and an open circuit (and D a short circuit) if n(z) = 0. A model of the open-loop
modulated power converter is simply obtained from (1) by letting k1 = k2 = ki = 0.

2.2 H-bridge drive

A power electronic drive with a position-controlled DC motor and a full bridge, or
H-bridge, DC/DC converter is shown in Fig. 2. The control objective for the system
is to put the motor shaft at a desired angular position xref1 . The angular position of
the shaft x1 is measured by using a rotational potentiometer with gain kpot, therefore
r = kpotxref1 . The motor supply voltage is obtained through a bipolar modulation of
the DC/DC converter: when the pair (S+

1 ,S−2 ) is conducting, the voltage over the
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Fig. 2. Position controlled DC motor driven by a H-bridge power converter: S±1,2 represent
ideal switches, δ is the dither signal, kpot is the transducer gain and ke is the electromagnetic
constant.

DC motor is v, and when (S−1 ,S+
2 ) is conducting, the voltage over the DC motor is

−v. By introducing as state vector, the angular position x1, the angular speed x2,
and the armature current x3, the dynamic model of the power electronic system can
be represented as

ẋ(t) = A0x(t)+b0v(t)+b1v(t) n(r(t)− cx(t)−δ(t)) (3)

with

A0 =

⎡

⎢

⎢

⎢

⎣

0 1 0

0 −β/J kt/J

0 −ke/La −Ra/La

⎤
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⎥

⎥

⎦

, b0 =
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⎢

⎢

⎢

⎣

0

0

−1/La

⎤

⎥

⎥

⎥

⎦

, b1 = −2b0, c=
[

kpot 0 0
]

where β is the friction coefficient, J the motor inertia, kt the torque constant, ke the
electromagnetic constant, Ra the armature resistance, La the armature inductance.
It is assumed that when n(z) = 1 the pair (S+

1 ,S−2 ) is conducting and when n(z) = 0
the pair (S−1 ,S+

2 ) is conducting.

2.3 DC/DC boost converter

ADC/DC boost converter generates at steady state an average output voltage that is
larger than its input voltage. The boost converter reported in Fig. 3 can be modeled
as

ẋ(t) = A0x(t)+b0v(t)+A1x(t) n(r(t)− cx(t)−δ(t)), (4)
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Fig. 3. DC/DC boost converter under voltage-mode control: S represents an ideal switch, D
is an ideal diode, δ is the dither signal and k1, k2 are the control parameters.
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.

The notation is similar to the buck converter, so δ is a periodic carrier signal, n
denotes the step function, S is conducting when n(z) = 1 etc. Note that in the boost
converter model (4), as opposed to the previous models (1) and (3), the nonlinearity
n multiplies the state variables.

2.4 Three-phase converter

Consider the three phase power converter reported in Fig. 4. Let us introduce for
each lag i = 1,2,3, a corresponding control variable ûi, which is equal to +1 if
S+
i is conducting (and S

−
i is not) and −1 if S−i is conducting (and S

+
i is not). By

applying the Kirchhoff’s circuit laws one obtains:

Lẋ1(t)=−Rx1(t)+ v1(t)− v2(t)+Rx2(t)+Lẋ2(t)+
−û1(t)+ û2(t)

2
x4(t) (5)

Lẋ2(t)=−Rx2(t)+ v2(t)− v3(t)+Rx3(t)+Lẋ3(t)+
−û2(t)+ û3(t)

2
x4(t) (6)

Lẋ3(t)=−Rx3(t)+ v3(t)− v1(t)+Rx1(t)+Lẋ1(t)+
−û3(t)+ û1(t)

2
x4(t) (7)

Cẋ4(t)=
û1(t)+1

2
x1(t)+

û2(t)+1
2

x2(t)+
û3(t)+1

2
x3(t)−

1
RL
x4(t). (8)

By using the equilibrium condition for the currents x1(t)+x2(t)+x3(t)≡ 0, one can
substitute ẋ2(t) = −ẋ1(t)− ẋ3(t) in (5), and by using (7) together with the (typical)
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Fig. 4. Three phase power converter: S±1,2,3 represent ideal switches.

equilibrium condition for the input voltages, v1(t)+ v2(t)+ v3(t) = 0, equation (5)
can be rewritten as

Lẋ1(t) = −Rx1(t)+ v1(t)+
1
6

(−2û1(t)+ û2(t)+ û3(t))x4(t).

With similar arguments one can write

Lẋ2(t)=−Rx2(t)+ v2(t)+
1
6

(û1(t)−2û2(t)+ û3(t))x4(t)

Lẋ3(t)=−Rx3(t)+ v3(t)+
1
6

(û1(t)+ û2(t)−2û3(t))x4(t)

Cẋ4(t)=
1
2
û1(t)x1(t)+

1
2
û2(t)x2(t)+

1
2
û3(t)x3(t)−

1
RL
x4(t).

The commutation of the switches can be determined by means of a modulated state
feedback. Then the signals ûi can be written as

ûi(t) = 2n(ri(t)− cix(t)−δ(t))−1,

where n(zi) = 1 (respectively, n(zi) = 0) means that, the upper (lower) switch of
the i-th lag is conducting. Thus, the entire model of the controlled converter can be
written as

ẋ(t) = A0x(t)+b0v(t)+
3

∑
i=1

Aix(t) n(ri(t)− cix(t)−δ(t)) (9)

where v is the vector of the input voltages, A0, Ai and b0 are matrices that can
be derived from the previous equations, and ci depend on the control strategy. A
typical open loop modulation strategy consists of choosing δ as a triangular dither
and ri as low frequency sinusoidal signals with suitable phase shifts.
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2.5 Hybrid model

General hybrid models, such as hybrid automata and switched systems, applicable
for power converters but also for many other applications, are widely considered
in the literature, e.g., (Lygeros et al., 2003; Guéguen and Zaytoon, 2004; Liberzon,
2003). The converters presented above are examples of a rather wide class of power
converters that can be modeled in the following form

ẋ(t) = A0x(t)+b0v(t)+
m

∑
i=1

(Aix(t)+biv(t)) n(ri(t)− cix(t)−δ(t)), (10)

where Ai, bi and ci are constant matrices of appropriate dimensions and m is an
integer related to the number of modes of the converter. The initial condition x(0)
is denoted by x0. The external input vector v and reference signals ri are assumed
to be Lipschitz continuous. The external carrier signal δ is assumed to be a high-
frequency signal of period p. Here δ is called a dither signal and consequently
the hybrid system (10) is called a dithered system. This terminology is frequently
used for a variety of mechanical and electrical control systems with high-frequency
excitation signals. In power electronics systems, δ is usually a sawtooth or trian-
gular signal, but in the following a general shape of the signal will be allowed.
Indeed, also dither signals that are constant over non-vanishing time intervals, such
as square-waves, saturated, and quantized signals, are sometimes used in applica-
tions.

Since the differential equation (10) has a discontinuous right-hand side (because
n is discontinuous), it is important to make some comments on the existence and
uniqueness of solutions. In the following it is assumed that (10) has at least one
absolutely continuous solution x(t,x0) on [0,∞) (in the sense of Carathéodory). It
is supposed that the time intervals when the solution is at a discontinuity point of n
are of zero Lebesgue measure. As a consequence, solutions with sliding modes are
not considered. Furthermore, it is supposed that the solutions have no accumulation
of switching events (Zeno solutions).

3 Averaging

In this section it is formulated a version of the main theorem in (Iannelli et al.,
2006), which will provide the foundation for the subsequent analysis. The averaged
system corresponding to the dithered system (10) is defined as

ẇ(t) = A0w(t)+b0v(t)+
m

∑
i=1

(Aiw(t)+biv(t)) N(ri(t)− ciw(t)) (11)
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Fig. 5. Sawtooth dither and the corresponding averaged nonlinearity.

where w(0) = x0 and N is an averaged nonlinearity, which is derived from the
original step nonlinearity n and the dither signal δ as follows:

N(z) !
1
p

∫

[0,p)
n(z−δ(s))ds. (12)

The averaged nonlinearity obviously depends on the shape of δ. Typical dither
signals are sawtooth, triangular, sinusoidal, trapezoidal, and square wave signals.
Fig. 5 shows a sawtooth signal and its averaged nonlinearity. Note that triangu-
lar dither and sawtooth dither with the same amplitude and period have the same
averaged nonlinearity.

The following averaging result follows from Theorem 3.1 in (Iannelli et al., 2006).
It states conditions when the dithered system (10) can be approximated by the av-
eraged system (11).

Proposition 3.1 (Iannelli et al. (2006)) Consider the dithered system (10) and the
averaged system (11) under the following assumptions:

(i) the external signals r(t) and v(t) are Lipschitz continuous,
(ii) the dither δ is p-periodic, |δ|≤Mδ, and the corresponding averaged nonlinearity

is Lipschitz continuous.

Then, the averaged system (11) has a unique absolutely continuous solution on
[0,∞). Moreover, for any compact setK ⊂Rn and any T > 0, there exists a positive
constant γ = γ(K ,T ) such that

|x(t,x0)−w(t,x0)|≤ γp, ∀x0 ∈ K , t ∈ [0,T ]. (13)

The approximation error depends linearly on the dither period. The proof in (Iannelli
et al., 2006) is constructive and gives an estimate of γ that has exponential depen-
dence on T but is independent of p. This fact can be used to derive an upper bound
on the approximation error between the dithered and the averaged systems over an
infinite time horizon provided that some stability condition is satisfied, see next
section for such a result.

It is straightforward to extend the averaging theorem to the case of more than one
dither signal (Iannelli et al., 2006). In that case, the averaged system will have one
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averaged nonlinearity corresponding to each dither. Moreover, it is possible to relax
the periodicity assumption on the dither and instead consider dither signals that
have some more general time repetition properties (Zames and Shneydor, 1976).
See (Iannelli et al., 2004) for details on how to extend Proposition 3.1 in this case.

It is possible to characterize a dither signal using its amplitude distribution function
(ADF). The ADF Fδ : R → [0,1] of a p-periodic dither signal δ : [0,∞) → R is
defined as

Fδ(ξ) !
1
p
µ({t ∈ [0, p) : δ(t) ≤ ξ}) ,

where µ denotes the Lebesgue measure. The amplitude distribution function sim-
ply says how large fraction of each period the dither signal lies below the level ξ.
The ADF is thus a deterministic analog of the probability distribution function. In
particular, it is a bounded, monotonically increasing function that takes values in
the interval [0,1]. The averaged nonlinearity corresponding to the step function is
equal to the ADF of the dither:

N(z) =
1
p

∫

[0,p)
n(z−δ(s))ds=

∫

R

n(z−ξ)dFδ(ξ) =
∫ z

−∞
dFδ(ξ) = Fδ(z). (14)

Therefore the averaged nonlinearity is determined by the shape of the dither. An
alternative condition in (ii) of Proposition 3.1 is thus that the ADF should be Lips-
chitz continuous.

4 Stability analysis

Proposition 3.1 can be used to derive stability results for the dithered system. In
this section it is shown that if the averaged system (11) has an exponentially stable
equilibrium, then the dithered system is practically stable.

Proposition 4.1 Suppose the averaged system (11) has an exponentially stable
equilibrium at w0, i.e., there exist α0 > 0 and β0 ≥ 1 such that

|w(t)−w0|≤ β0e−α0t |w(0)−w0|, ∀t ∈ [0,∞).

If the conditions of Proposition 3.1 are satisfied, then for any compact set K and
constants ε > 0 and 0< α < α0, the dithered system (10) satisfies

|x(t)−w0|≤ β0e−αt |x(0)−w0|+ ε, ∀x(0) ∈ K , t ∈ [0,∞)

for all p ∈ (0, p0) where

p0 =
1−α1

(β0+(1−α1))γ
ε, T = −α−1

0 ln(α1/β0),
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α1 = β−α/(α0−α)
0 ∈ (0,1), and γ = γ(K ,T ) as in Proposition 3.1.

PROOF. See Appendix.

The result shows that the state of the dithered system converges to a neighbourhood
of the origin with a rate similar to the averaged system, provided that the dither
frequency is sufficiently high. The size of the neighborhood is determined by the
high frequency ripple that appears due to the dither signal.

The relationship between the averaged and the dithered solutions show that dither-
ing can be also interpreted as a technique for regularizing solutions of nonsmooth
systems. In fact, since n is discontinuous, the solution of (10) might not be unique.
On the other hand, if the averaged nonlinearity is Lipschitz, the averaged sys-
tem (11) will have a unique solution. Now, from Proposition 3.1 and Proposition 4.1
one can conclude that by decreasing the dither period, all possible solutions of (10)
will get closer and closer to the unique solution of the averaged system (11).

Proposition 4.1 assumes that the averaged system (11) has an exponentially stable
equilibrium. Regarding the stability analysis of smooth averaged systems, there
are many available results. Here stability conditions are considered for a class of
averaged systems with m= 1, v(t) = E constant, r(t) = r constant, b0 = 0, A1 = 0,
b1 = b/E, and A0 = A, where A is a Hurwitz matrix and b is a given vector. The
averaged dynamics become

ẇ(t) = Aw(t)+bN(r− cw(t)). (15)

From (15) the equilibrium state can be written as w0 = −A−1bN(e0) and the equi-
librium value of the output error e0 = r− cw0 is determined by the equation

e0− cA−1bN(e0) = r. (16)

The system (15) is on Luré form, i.e., it is a negative feedback interconnection
between a linear system G(s) = c(sI−A)−1b and a static nonlinearity.

The averaged models of buck converters and H-bridge converters are on Luré form.
The Popov criterion is one of many possible tools for proving exponential stability
of such systems. More sophisticated results include the Zames and Falb (1968)
result and the integral quadratic constraint method (Megretski and Rantzer, 1997).
By using the Popov criterion, the following proposition provides conditions for the
exponential stability of the averaged system (15).
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Proposition 4.2 The equilibriumw0=−A−1bN(e0) of (15), where e0 satisfies (16),
is exponentially stable with rate of decay α > 0, if there exists k > 0 such that

(i) A+αI is Hurwitz,
(ii) N is in the sector [0,k], i.e.,

(e− e0−
1
k
(N(e)−N(e0)))(N(e)−N(e0)) ≥ 0, ∀e ∈ R,

(iii) there exists λ≥ 0 such that

Re((1+λ( jω−α)G( jω−α))≥ αλk|G( jω−α)|2−
1
k
, ∀ω ∈ R.

PROOF. See Appendix.

Proposition 4.2 illustrates how it is possible to infer stability of the dithered system
by analyzing the simpler averaged system. In next section it is shown how the
result can be used to predict the behavior of a buck converter. Proposition 4.2 can
be extended to the case when there is integral action in the dynamics (Jönsson and
Megretski, 2000).

Many converter models such as the boost converter and the three phase converter
do not have averaged dynamics on Luré form. These systems have instead bilinear
averaged dynamics. In general, it is easier to analyze these systems with Lagrangian
and Hamiltonian methods, e.g., (Ortega et al., 1988; Escobar et al., 1999).

5 Effects of dither shape

The results on averaging and stability show that robustness and stability properties
satisfied by the averaged system can be inherited by the dithered system. This sec-
tion gives some examples that illustrate how the dither can be used for designing
control systems and motivate the need for a deeper investigation of the possible use
of dither shapes.

5.1 Stabilization through appropriate dither

Consider the DC/DC buck converter under proportional control and sawtooth dither
(see Fig. 1). The controller parameters are k1 = 0, k2 = 1, kp = 0.5, ki = 0, and
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v(t) = E constant. The averaged dynamics can be written in the form (15) with

A=

⎡

⎣

−R1/L −1/L

1/C −1/(R2C)

⎤

⎦ , b=

⎡

⎣

E/L

0

⎤

⎦ , c=
[

0 0.5
]

,

and the averaged nonlinearity is

N(z) =

⎧

⎪

⎨

⎪

⎩

1, z>Mδ

0.5+ z/(2Mδ), |z|≤Mδ

0, z< −Mδ,

which belongs to the sector [0,1/(2Mδ)]. If e0 ∈ [−Mδ,Mδ], then N(e0) = 0.5+
e0/(2Mδ) and (16) gives

e0 =
2Mδ(r−0.5G(0))
2Mδ+G(0)

,

where G(s) = c(sI−A)−1b. Hence, provided that e0 ∈ [−Mδ,Mδ], it follows that
the stationary output error is

xref2 −w02 =
2Mδ(r−0.5G(0))
0.5(2Mδ+G(0))

(17)

and the stability condition (iii) of Proposition 4.2 is

Re((1+λ( jω−α)G( jω−α))≥
αλ
2Mδ

|G( jω−α)|2−2Mδ, ∀ω ∈ R. (18)

It follows that the stationary output error becomes smaller as the dither amplitude
Mδ is decreased. The loop gain is in the linear range of the nonlinearity inversely
proportional to Mδ, which implies a faster response as Mδ decreases. The price
paid for a higher loop gain is that the stability criterion in (18) is harder to satisfy.
It may seem contradictory to get a higher loop gain, and thus faster dynamics, at
the same time as a smaller rate of decay α is needed in (18). The reason is that the
stability criterion provides a global estimate of the rate of convergence and takes
the saturation into account in the estimate.

Consider the following converter parameters R1 = 0.1Ω, L = 10mH, C = 220µF,
R2 = 8.9Ω, E = 10V. By computing the stationary output voltage in (17) and an
upper bound for α in the stability criterion in (18), the following table can be ob-
tained:

13
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Fig. 6. Capacitor voltage and inductor current of the closed loop DC/DC buck converter
with triangular dither. The reference xref2 varies from 5 V to 8 V after 0.03 s. The dither
period is p= 1.25ms with amplitude Mδ = 0.5.

xref2 −w02 Mδ = 0.5 Mδ = 5

xref2 = 5 0.01 0.04

xref2 = 8 0.51 2.04

α = 87 α = 244

These theoretical predictions are confirmed in the simulation experiments reported
in Figs. 6–7. Note that by increasing the amplitude of the sawtooth dither signal, the
stationary output voltage error increases at the same time as the rise time becomes
larger. This is particularly easy to see when the reference voltage varies at t =
0.03 s. Moreover the oscillations decay slower for a small amplitude of the dither.
This is predicted by the smaller value of α.

5.2 Dithers with non-Lipschitz ADF

The dither shape can be designed to give a desired behavior of the averaged system.
Consider, for instance, a system with triangular dither. Then the averaged nonlin-
earity is a saturation. If the averaged system is not stable in a neighborhood of the
origin due to the high gain of the averaged nonlinearity, then it is possible to in-
crease the amplitude of the dither and thus decrease the gain in the linear region of
the nonlinearity, cf., Fig. 5. As an alternative, it is also possible to choose the dither
shape so that the slope of the averaged nonlinearity is distributed unevenly over the
nonsaturated region. One such possibility is to use a sinusoidal dither, which gives
an averaged nonlinearity with small slope near the equilibrium at the expense of a
steeper slope close to the saturation region, see Fig. 8. The averaged nonlinearity is
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Fig. 7. Capacitor voltage and inductor current of the closed loop DC/DC buck converter
with triangular dither. The converter and controller parameters are the same as in Fig. 6,
but the dither amplitude is ten times larger (Mδ = 5).
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0.5

Fig. 8. Sinusoidal dither and the corresponding averaged nonlinearity.

in this case

N(z) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 z< −Mδ
1
2

(

1+
2
π
sin−1(

z
Mδ

)

)

|z|≤Mδ

1 z>Mδ.

Note that N(z) is continuous but not globally Lipschitz, so it does not satisfy con-
dition (ii) of Proposition 3.1. It is nevertheless sometimes possible to successfully
use this type of nonlinearity in applications to stabilize the system. An experimen-
tal example is given in Section 7. This motivates a further investigation of the need
for the assumptions made on the dither signal in Proposition 3.1. In Section 6 it will
be proven that if the condition (ii) in Proposition 3.1 is violated, then the averaged
system does not necessarily approximate the dithered system. The averaged non-
linearity corresponding to the sinusoidal dither is continuous but has unbounded
derivative. It is also possible to have discontinuous averaged nonlinearities. Since
n(z) is discontinuous in z = 0, it holds that if δ(t) is constant, equal to δ̄, say, for
some nonzero time interval, then N(z) is not defined for z = −δ̄. One such exam-
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Fig. 9. Trapezoidal dither and the corresponding averaged nonlinearity; a square wave
dither corresponds to ∆ = 0.

ple is the trapezoidal signal in Fig. 9. It is easy to see that dither signals that are
constant over non-vanishing time intervals, such as trapezoidal and square wave
signals, have discontinuous averaged nonlinearities. This class of zero-slope dither
signals can give rise to interesting dynamical behaviors when applied to discontin-
uous feedback systems. They need to be carefully analyzed, as discussed in next
section.

6 Subtleties in the averaging of switched power converters

This section shows that when conditions on the ADF are not satisfied, it is pos-
sible to find systems for which the conclusions of Proposition 3.1 do not hold. In
particular it is shown that when conditions on the averaged nonlinearity are not
satisfied, it can happen that there are multiple solutions of the averaged system, or
an approximation error that cannot be arbitrarily decreased by increasing the dither
frequency. The proofs of these results are constructive in the sense that they are
based on examples that illustrate the limitations.

The following example shows that it cannot be ensured the existence of a unique
solution to the averaged system unless it is imposed the boundedness of the deriva-
tive of the averaged nonlinearity N(z). Consider the dithered nonsmooth feedback
system (10) withm= 1, A0=A1= 0, b0= 0, b1= 4, c1 =−1, x(0) =−1, r1(t)≡ 0,
v(t) ≡ 1 and δ is the following p-periodic quadratic dither signal

δ(t) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−4Mδ

(

t
p

)2
+Mδ, t mod p ∈ (0, p

2
]

4Mδ

(

t
p

)2
−8Mδ

t
p

+3Mδ, t mod p ∈ (
p
2
, p].
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The corresponding averaged nonlinearity is

N(z) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 z≤−Mδ
1
2

√

1+
z
Mδ

−Mδ ≤ z≤ 0

1− 1
2

√

1− z
Mδ

0≤ z≤Mδ

1 z≥Mδ.

(19)

Note that N(z) is absolutely continuous but its derivative is not bounded. The aver-
aged system (11) now reduces to

ẇ(t) = 4N(−w(t)), w(0) = −1

where N(z) is given by (19). Note that this averaged system is not globally Lips-
chitz because N(z) is not globally Lipschitz. It is easy to show that when Mδ = 1
the averaged system has a nonunique solution. In fact, there are infinitely many
solutions parameterized by τ ∈ [0,∞) and given by

w(t) =

{

−1 0≤ t ≤ τ
(t− τ)2−1 t ≥ τ.

Then it is possible to claim the following proposition.

Proposition 6.1 Suppose the averaged nonlinearity N(z) is absolutely continuous
but its derivative is not bounded. Then there exists a dithered system (10) for which
the corresponding averaged system (11) does not have a unique solution.

The next example shows that if the averaged nonlinearity is not absolutely contin-
uous then the uniform approximation property in (13) of Proposition 3.1 cannot be
guaranteed. Consider the nonsmooth feedback system (10) with m= 1, and

A0 =

⎡

⎣

−1 −1

0 −2

⎤

⎦ , A1 =

⎡

⎣

0 0

0 0

⎤

⎦ , b0 =

⎡

⎣

0

−1

⎤

⎦ , b1 =

⎡

⎣

0

2

⎤

⎦ , c1 =
[

1 0
]

.

Let the external signals be constants: r1(t) = 0.5 and v(t) = 1. The dither δ is a
square wave signal with amplitude Mδ = 0.5. The averaged system (11) has an
averaged nonlinearity N as given in Fig. 9 with ∆ = 0 and Mδ = 0.5.

Let the state space of the dithered and the averaged systems be partitioned into the
following three regions, see Fig. 10:

• RegionΩ1 = {x : x1 < 0}. In this region n(r1−c1x−δ) = 1. The dithered system
coincides with the averaged system and they have dynamics ẋ = A0x− b0. The
equilibrium point is P1 = A−10 b0 = (−0.5,0.5)T .
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• RegionΩ2 = {x : x1 > 1}. In this region n(r1−c1x−δ) = 0. The dithered system
coincides with the averaged system and they have dynamics ẋ = A0x+ b0. The
equilibrium point is P2 = −A−10 b0 = (0.5,−0.5)T .

• Region Ω0 = {x : 0< x1 < 1} with subsets Ω+
0 = {x : 0< x1 < 1, x2 > 0.5} and

Ω−
0 = {x : 0 < x1 < 1, x2 < −0.5}. In Ω0 the state does not affect the output

of the step nonlinearity. The dithered system can be represented by the linear
system

ζ̇ = A0ζ−b0u (20)

with u a periodic signal that switches between −1 (when r1− δ(t) = 0) and 1
(when r1− δ(t) = 1). The averaged system has an input equal to zero in this
region, i.e., ẇ= A0w.

Consider x(0) = w(0), with 0< x1(0) < 1, 0< x2(0) < 0.5 and x1(0) > x2(0). It is
easy to show that the averaged trajectory will tend to the origin without leaving the
set indicated for the possible initial conditions. The dithered trajectory will oscillate
about the averaged solution. By considering the vector fields indicated in Fig. 10,
it follows that the dithered trajectory cannot leave the set Ω0−{Ω+

0
⋃

Ω−
0 } but by

crossing the segment {x : x1 = 0, 0 ≤ x2 ≤ 0.5}. Moreover in Ω0 the solution of
the dithered system can be represented as

x(t) = eA0t(x(0)−ζ0)+ζss(t),

where ζss is the steady-state p-periodic solution of (20) and

ζ0 = −(I− eA0p)−1
∫ p

0
eA0(p−s)bu(s)ds.

Since A0 is Hurwitz, x(t) will converge to ζss(t), which is a counter clockwise
oscillation around the origin. It is always possible to choose a small enough dither
period p such that ζss(t) never intersects Ω2, since ζss → 0 when p→ 0. It is then
clear that x(t) eventually will cross the x2 axis for some 0≤ x2 ≤ 0.5.

It is easy to see that the second orthant is an invariant set under the dynamics of the
dithered and averaged systems. Moreover, since the system matrix A0 is Hurwitz,
the dithered solution x(t) will tend toward the equilibrium point P1.

The above example shows that the dithered and the averaged systems behave qual-
itatively different since they converge to two different points, P1 and the origin,
respectively. This is in contradiction to the inequality (13) of Proposition 3.1. In-
deed, if the compact setK includes the origin, it would need to make p smaller and
smaller the closer x0 is to the origin (on the trajectory indicated in Fig. 10) in order
to get the inequality satisfied, because it always exists a p such that (13) does not
hold. Hence, there is no uniform bound on p that holds for all x0 ∈ K . Then it is
possible to state the following proposition.
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Ω1 Ω0 Ω2

P1

·

P2

Fig. 10. Phase plane trajectories and vector fields for the dithered system (10) and the aver-
aged system (11) with p= 0.1 and initial conditions x0 = w0 = [0.6 0.2]T . The trajectory of
the dithered system converges to P1 while the trajectory of the averaged system converges
to the origin.

Proposition 6.2 Suppose the averaged nonlinearity N(z) is discontinuous. Then
there exists a dithered system (10) for which the uniform bound in (13) of Proposi-
tion 3.1 does not hold.

The discrepancy between the averaged and the dithered dynamics indicated above
have previously been discovered in simulations: limit cycles appeared in the dithered
but not in the averaged system in an example in (Iannelli et al., 2003). The second
example in next section shows that such discrepancy also can appear under experi-
mental conditions.

7 Experimental results

In this section experiments with the DC/DC buck converter and the H-bridge drive
show how and when the averaging analysis can be used.

7.1 DC/DC buck converter

Consider the DC/DC buck converter reported in Fig. 1 with R1 = 0.1Ω, L= 1mH,
C = 220µF, R2 = 8.9Ω, r = 6, v= 10V, kp = 0, k1 = 0.5, k2 = 1, and ki = 10. The
controller is implemented through a dSPACETM DS1103 PPC controller board with
a sampling period of 10µs. The implementation scheme of the controlled DC/DC
buck converter is reported in Fig. 11.
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Fig. 11. Implementation scheme for the controlled DC/DC buck converter.
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Fig. 12. Dynamic response of the output voltage to an input voltage variation (from 10V
to 14V) for: (a) sawtooth dither (top diagram) and (b) sinusoidal dither (bottom diagram)
both with Mδ = 0.25 and p = 200µs. The sinusoidal dither leads to a slightly shorter rise
time and a larger overshoot compared to the sawtooth dither.

The experimental results obtained by varying the input voltage from 10V to 14V
using dither signals with different shapes and amplitudes are reported in Fig. 12
and Table 1.

Experiments show that the behavior of the controlled system is dependent on the
dither shape and amplitude. For instance, for Mδ = 0.1, the sinusoidal dither re-
covers the desired output voltage in a shorter time and with lower overshoot than
the sawtooth dither signal. The opposite occurs for Mδ = 0.25 (see Fig. 12) and
Mδ = 0.35. By computing the averaged models it is possible to verify that the ex-
periments confirm that the dithered systems represent a good approximation of the

20



Amplitude Settling Overshoot Voltage

[V] time [ms] ripple [V]

0.1 15.6 18.3% 0.10

Sawtooth 0.25 15.0 18.2% 0.12

dither 0.35 14.8 18.7% 0.13

0.1 14.2 15.3% 0.12

Sinusoidal 0.25 16.8 23.3% 0.15

dither 0.35 18.0 22.7% 0.16
Table 1
Experimental results of the DC/DC buck converter with input voltage change. The dither
frequency is 5 kHz. The settling time is evaluated at 5% of the steady state averaged output
voltage.
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z
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Fig. 13. Equivalent computed nonlinearity (with p= 200µs): (a) triangular dither (top dia-
gram), (b) sinusoidal dither (bottom diagram) both with Mδ = 0.1,0.35. On the horizontal
axis it is reported z = 1

p
∫ t
t−p(r− cx(τ)− δ(τ))dτ and on the vertical axis it is reported

N(z) = 1
p
∫ t
t−p n(r− cx(τ)−δ(τ))dτ.

averaged ones. By evaluating the time averaging (on a dither period) of both the in-
put and output signals of the step nonlinearity during different dynamic operating
conditions, Fig. 13 is obtained. The computed averaged nonlinearities reproduce
their analytical prediction obtained through (12). Indeed it is also possible to show
that the averaged system approximates quite well the behavior of the dithered sys-
tem, although the condition (ii) of Proposition 3.1 is violated. This is not true in
general, as it was shown in Proposition 6.2 and as it will be confirmed by the next
experiment.
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Fig. 14. Measured angular position x1 for sawtooth dither of three frequencies.

7.2 H-bridge drive

Consider the DC motor control system described in Section 2.2. The DC motor has
the following parameters: Ra = 2.510Ω, La = 0.530mH, kt = ke = 5.700mV/(rad ·
s−1), β = 0.411mN · cm/(rad · s−1), J = 31.400g · cm2, kpot = 3/(2π)V/rad, v =
4.500V. Two dither shapes are considered: a sawtooth signal and a trapezoidal sig-
nal. The dither amplitude is in all cases equal toMδ = 70mV. It can be shown (e.g.,
using the Popov criterion) that the averaged systems corresponding to the sawtooth
and trapezoidal dither cases are both asymptotically stable. For sawtooth dither, the
approximation error between the dithered system and the averaged system tends to
zero as the dither frequency goes to infinity, in accordance with Proposition 3.1.
Hence, since the averaged system is asymptotically stable, the system output goes
to zero as we increase the dither frequency. For trapezoidal dither, the assumptions
of Proposition 3.1 are not fulfilled, since trapezoidal dither has a discontinuous
amplitude distribution function.

The following DC motor experiments support these theoretical conclusions. The
system is stabilized with sawtooth dither, but not with trapezoidal dither. Experi-
ments were carried out using sawtooth dither of frequencies 100, 200, and 500 Hz.
Fig. 14 reports the angular position of the motor shaft under steady-state conditions
and Fig. 15 a phase-space diagram. Note that by increasing the dither frequency the
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[A]

[rad]

[rad/s]

Fig. 15. Phase-space with sawtooth dither with p= 5ms: the armature current, the measured
angular position and the angular speed. Note that the angular position has a small ripple
as illustrated in Fig. 14. The two planes reported in the figure represent the boundaries
corresponding to the minimum and maximum values of the dither.

behavior of the dithered system converges to the behavior of the (stable) averaged
system (i.e., the system output goes to zero). Table 2 reports the ratios between
consecutive averages of the peak-to-peak values of the output signal, thus indicat-
ing the convergence rate. The averaging effect of the dither works properly in this
case. Figs. 16–17 show experiments with trapezoidal dither. In this case, the system
output shows a slow oscillation with a substantial amplitude for all three dither fre-
quencies. The frequency of the oscillation is low compared to the dither frequency,
and it seems to be relatively independent of the dither frequency. In particular, note
that by increasing the dither frequency, the system output does not converge to
zero, as was the case with sawtooth dither. Instead going from 200 Hz to 500 Hz,
the amplitude of the oscillation is even increasing, see Table 2.

To investigate the high frequency limiting case, a square wave dither of 1 MHz has
been applied. Fig. 18 shows the result. Although the trajectory does not intersect
the planes in this case, the dither still does not stabilize the system about the origin.

The oscillations that appear in Figs. 16–18 are not predicted by the averaged dy-
namics. The oscillations in the experiments also appear in simulations of the corre-
sponding dithered system and it is an example of the discrepancy that may appear

23



0 0.05 0.1 0.15 0.2 0.25
−0.4

−0.2

0

0.2

0.4

0 0.05 0.1 0.15 0.2 0.25
−0.4

−0.2

0

0.2

0.4

0 0.05 0.1 0.15 0.2 0.25
−0.4

−0.2

0

0.2

0.4

[rad]

[rad]

[rad]

[s]

p= 10ms

p= 5ms

p= 2ms

Fig. 16. Measured angular position for trapezoidal dither of three frequencies. Note the
different scale compared to Fig. 14.

between the solutions of the dithered and averaged systems when the conditions of
the averaging theorem are not satisfied.

8 Conclusions

In this paper it has been shown that an important class of power electronics systems
can be re-casted in the framework of dithered nonsmooth systems. By exploiting
recent theory for hybrid systems with external excitation, it has been analyzed how

Sawtooth dither Trapezoidal dither

f peak-to-peak ratio peak-to-peak ratio

100Hz 0.0850rad 3.32 0.582rad 1.97

200Hz 0.0256rad 2.84 0.295rad 0.86

500Hz 0.0090rad - 0.343rad -
Table 2
Experimental results of the angular position for the H-bridge drive with different dither
signals.
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Fig. 17. Phase-space with trapezoidal dither with p= 10ms.

the shape of the external signal affects the averaging result and thereby the behav-
ior of the power converters. Simulations and experiments supported the theoretical
results and showed the importance of understanding the limitations of averaging
theory in practice.

The results presented in this paper propose several interesting research problems for
future investigations. An important problem is on developing principles for dither
design. The paper shows that certain classes of dither signals are more suitable than
others. A next step would be to optimize the choice of signal within such a class.
For practical problems, such as the design of power converters, implementation
aspects should be taken into account in this procedure, since certain modulation
signals might be easier to generate or are more desirable for other reasons. Fur-
ther analysis of some of the dynamical properties illustrated in the simulations and
experiments of the paper is needed. For instance, the peculiar oscillations that ap-
pear in the experiments of the H-bridge drive with trapezoidal dither require further
investigations.
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Fig. 18. Phase-space with square wave dither with p= 1µs.
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Appendix: Proofs

Proof of Proposition 4.1

To prove the result iteratively consider time intervals of length T =−α0−1 ln(α1/β0)
where 0< α1 < 1. Let ε0 = γp0, where γ = γ(K ,T). Then Proposition 3.1 implies

|x(t)−w(t)|≤ ε0

on t ∈ [0,T ]. By considering a sequence of functions w̃k, k = 1,2, . . ., each defined
on an interval [kT,(k+1)T ] and satisfying (11) with w̃k(kT ) = x(kT ), then it fol-
lows that

|w̃k(t)−w0|≤ β0e−α0(t−kT )|x(kT)−w0|, ∀t ≥ kT,

and, by applying Proposition 3.1 again,

|x(t)−w0| =|x(t)− w̃k(t)+ w̃k(t)−w0|≤ β0e−α0(t−kT )|x(kT )−w0|+ ε0 (21)

on t ∈ [kT,(k+1)T ]. By evaluating (21) in t = (k+1)T ,

∣

∣x((k+1)T )−w0
∣

∣ ≤ α1|x(kT)−w0|+ ε0. (22)

Hence

∣

∣x(kT )−w0
∣

∣ ≤ αk1
∣

∣x0−w0
∣

∣+ ε0
1−αk1
1−α1

. (23)

Then (21) becomes

|x(t)−w0|≤ β0e−α0(t−kT )
(

e−αkT |x0−w0|+
ε0

1−α1

)

+ ε0

≤ β0e−αt ∣
∣x0−w0

∣

∣+β0
ε0

1−α1
+ ε0, (24)

for t ∈ [kT,(k+ 1)T ], where α = −T−1 lnα1, which implies α < α0. The result
follows since (24) is valid for any k and

β0
ε0

1−α1
+ ε0 = γp0

β0+1−α1
1−α1

= ε.
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Proof of Proposition 4.2

Condition (i) and (iii) implies by the Kalman-Yakubovich-Popov Lemma that there
exists P= PT > 0 such that

⎡

⎣

ATP+PA+2αP+2αλkcT c Pb− (c(I−λA))T

bTP− c(I−λA) −
2
k
−2λcb

⎤

⎦ ≤ 0 (25)

Let z = w−w0, y = −c(w−w0), φ(y) = N(r− cw0+ y)−N(r− cw0). Then the
error dynamics satisfies

ż= Az+bφ(y), y= −cz

and by (ii) the following sector condition holds (y− 1
kφ(y))φ(y) ≥ 0. Let V0(z) =

zTPz and

V (z) =V0(z)+λ
∫ y

0
φ(σ)dσ

It follows from (14) that the nonlinearity is monotonically nondecreasing (because
Fδ is monotonically nondecreasing), which in turn implies that the integral always
is positive. This implies that this Lyapunov candidate is bounded by

λmin(P)|z|2 ≤V (z) ≤
(

λmax(P)+
λk
2
|c|2

)

|z|2 (26)

Finally, from (25) and the sector condition on φ it can be derived the following
bound on the derivative

V̇ (z) ≤−2αV (z) (27)

It follows from (26) and (27) that |z(t)|≤ βe−αt |z(0)|, where

β =
√

(λmax(P)+λk|c|2/2)/λmin(P).

This completes the proof.
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