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Abstract—Dithering is proposed as a technique for the regu-
lation of the boundary layer for switched systems under sliding
mode control. It is proved that dithering maintains the state of
the system close to the ideal sliding manifold and that state error
and practical stability depend on the dither amplitude, period
and shape, all by preserving the natural switching mode of the
system. Experiments on a DC/DC buck power converter confirm
the theoretical results.

Index Terms—Dither techniques, power electronics, sliding
mode, switched systems.

I. INTRODUCTION

Practical applications of ideal sliding mode control are
typically affected by chattering [1]. A widely used solution to
the chattering problem is based on the boundary layer idea [2],
[3]. The boundary layer controller consists of a smooth in-
terpolation of the relay characteristic typical of the sliding
controller (resulting for instance in a saturation or a sigmoid)
and its design should achieve a good compromise between
robustness, which asks for increasing the controller gain, and
chattering mitigation, which needs a reduction of the controller
gain [1], [4]. Despite its common use, the smoothness of the
boundary layer controller makes this solution not natural for
systems that by their nature operate in switching (i.e. on-off)
mode.
In this paper it is proved that dithering can be used as a
boundary layer approach for switched systems with sliding
mode control. A dithered system is a system with nons-
mooth nonlinearities (such as relays) in which a suitable
high frequency signal (the dither) is injected at the input
of the discontinuous nonlinearity. Dithered systems can be
analytically approximated by an averaged system, without
dither, in which the discontinuous nonlinearity is replaced by
an averaged nonlinearity whose shape depends on the dither
signal waveform [5], [6]. In this paper it is shown that the
boundary layer can be adapted by simply changing the dither
shape and the error between the state of the dithered system
and the state of the boundary layer (the averaged) system is
of order of the dither period.
An interesting class of switched systems for which sliding
mode control is widely used is represented by power con-
verters [7], [8], [9]. The theoretical results here proposed are
experimentally verified on a sliding mode controlled DC/DC
converter for which the problem of chattering mitigation is
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typically solved through a suitable use of hysteretic con-
trollers [10], [11]. Simulation results were presented by the
authors in [12]. The experiments reported in the paper confirm
the use of dither as an effective alternative solution for the
implementation of a boundary layer controller.

II. PRELIMINARIES
Consider the nonlinear system

¥̇ = f(¥, ª) (1a)
ª̇ = fa(¥, ª) + Ga(¥, ª)u (1b)

where ¥ 2 Rn°p, ª 2 Rp, u 2 Rp is the input of the
system, Ga(¥, ª) is non singular and f(¥, ª) and fa(¥, ª)
are globally Lipschitz functions. From (1) the sliding mode
controlled system can be represented through the following
model [2]:

¥̇ = f(¥, ª) (2a)
ª̇ = f0(¥, ª)° Æ(¥, ª)w (2b)

where Æ(¥, ª) is a scalar function satisfying the condition
Æ(¥, ª) ∏ Æ0 > 0, f0 is a globally Lipschitz function obtained
from the control law

u = G°1
a [°fa(¥, ª) +

@¡(¥)
@¥

f(¥, ª)] + G°1
a v (3a)

v = °Æ(¥, ª)w (3b)

with ¡(¥) a Lipschitz function that stabilizes the system ¥̇ =
f(¥,¡(¥)) and the control variable w 2 Rp is given by the
component-wise relay characteristic:

wi = n(æi) = sgn(æi) ,
(

+1, æi > 0
°1, æi < 0

(4)

for i = 1, . . . , p, with æ(¥, ª) = ª°¡(¥) and æ = 0 represents
the sliding manifold.
The boundary layer idea is based on the use of a continuous
approximation of the discontinuous sliding mode controller. A
typical choice consists of replacing the relay characteristic (4)
by a saturation function, i.e. by using in (2)

wi = sat
≥æi

≤

¥
(5)

for i = 1, . . . , p, where 1/≤ is the slope of the linear part of
the saturation. The resulting system is the so-called boundary
layer system.
The dithered system corresponding to (2) is defined as

¥̇d = f(¥d, ªd) (6a)
ª̇d = f0(¥d, ªd)° Æ(¥d, ªd)wd (6b)
wd = n(æ(¥d, ªd) + ±) (6c)

æ(¥d, ªd) = ªd ° ¡(¥d) (6d)
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where the components of the dither signal ± are assumed to
be periodic of period T with zero mean value and the relay
characteristic n is defined in (4). Note that the function æ is
Lipschitz with respect to its arguments. When the dither is a
sawtooth high frequency signal, (6) can be interpreted as a
pulse width modulated system with æ being the modulating
signal. In our analysis, instead, the shape of ± is chosen
depending on the desired equivalent behaviour of the dithered
system represented by a corresponding averaged system, de-
fined as

¥̇s = f(¥s, ªs) (7a)
ª̇s = f0(¥s, ªs)° Æ(¥s, ªs)ws (7b)
ws = N(æ(¥s, ªs)) (7c)

æ(¥s, ªs) = ªs ° ¡(¥s) (7d)

where N(z) is the so-called averaged nonlinearity. The aver-
aged (or smoothed) nonlinearity is obtained by evaluating the
time averaging of the output of the relay on a dither period T
by assuming z constant:

N(z) =
1
T

Z T

0
n(z + ±(t))dt. (8)

The function N(z) depends on the signal ± and its shape.
If the dither signal is a sawtooth (or a triangular) waveform
which varies between °M± and +M± and period T , it is easy
to show (by applying (8)) that

N(z) = sat(z/M±) =

8
><

>:

°1, z < °M±

z/M±, |z| ∑ M±

+1, z > M±.

(9)

Note that N(z) is Lipschitz (with Lipschitz constant equal
to 1/M±) while the original relay nonlinearity was discon-
tinuous: dither has “smoothed” the relay. Other averaged
nonlinearities can be obtained by considering different dither
signals [6]. For instance, if a sinusoidal dither of amplitude
M± is used, the corresponding averaged nonlinearity is

N(z) =

8
>><

>>:

°1 z < °M±
2
º

sin°1 z

M±
|z| ∑ M±

1 z > M±

(10)

which is absolutely continuous.

III. DITHERED SLIDING MODE CONTROLLER

A. Attractiveness
The state of the dithered system will reach in finite time

a suitable neighborhood of the sliding manifold æ(¥, ª) = 0,
say ≠, which depends on the dither amplitude. That is proved
in the following lemma.
Lemma 1: Consider the dithered system (6) in which ±

is any periodic waveform of amplitude M± . For any initial
condition (¥d0, ªd0) = (¥0, ª0) 2 Rn, the trajectories of the
dithered system reach the region

≠ = {(¥d, ªd) : |æi(¥d, ªd)| ∑ M±, i = 1, . . . , p} (11)

after a finite time ¢.
Proof: Outside the region ≠, the dither signal ± has no

effect since when |æi| > M± the corresponding argument of n
in (6) does not change signum. So the dithered system is equal
to the system (2). Therefore, outside ≠, from the definition of
the sliding manifold one can write:

æ̇(¥d, ªd) ¥ æ̇(¥, ª) = ª̇ ° @¡(¥)
@¥

¥̇ =

= f0(¥, ª)° Æ(¥, ª)w ° @¡(¥)
@¥

f(¥, ª) =

= °Æ(¥, ª)w = °Æ(¥, ª)n(æ(¥, ª)). (12)

Now, define V = 1
2

Pp
i=1 æ2

i as a Lyapunov function
candidate for the system (12). Considering the i-th component,
it follows that:

V̇i = æiæ̇i = °æiÆ(¥, ª)n(æ). (13)

If |æi| > M± (that is outside ≠), then:

V̇i = °æiÆ(¥, ª)n(æi) = °|æi|Æ(¥, ª) ∑ °Æ0|æi|. (14)

So, the inequality V̇i ∑ °Æ0|æi| ensures that the trajectory
reaches the region (11) in a finite time.

B. Stability of the averaged system

It is now possible to show that over an infinite time horizon
the state of the dithered system will remain close to the state
of the averaged system when the latter tends asymptotically
to the origin. Note that this result is valid everywhere and
not only outside ≠ where it is obvious because the sliding
mode system (2), the dithered system (6) and the averaged
system (7) are the same. As a consequence of this result one
can conclude that the state of the dithered system will remain
about the sliding manifold over an infinite time horizon.
Lemma 2: Consider the averaged system (7). Suppose that

the nonlinearity N(z) can be written as N(z) = N(z/M±)
that satisfies the condition

zN(z) ∏ ∞z2, 8|z| ∑ 1 (15)

with ∞ > 0. So, if the origin of the system ¥̇s = f(¥s,¡(¥s))
is globally exponentially stable, then there exist M§

± > 0 such
that for all 0 < M± < M§

± the origin of the averaged system
is globally uniformly asymptotically stable.

Proof: From (7d) it follows that:

æ̇ = ª̇s °
@¡(¥s)

@¥s
¥̇s = °Æ(¥s, ªs)N (æ) . (16)

Since outside the boundary layer the dithered and averaged
systems are equivalent, by following the same proof of the
Lemma 1, it can be showed that every trajectory of the system
reach the set ≠ in a finite time. Inside the region ≠, the
dynamic model of the system is given by:

¥̇s = f(¥s,æ + ¡(¥s)) (17a)
æ̇ = °Æ(¥s,æ + ¡(¥s))N (æ) . (17b)
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By the converse Lyapunov theorem [2], there exists a radially
unbounded Lyapunov function V0(¥s) that satisfies

k1|¥s|2 ∑ V0(¥s) ∑ k2|¥s|2
@V0

@¥s
f(¥s,¡(¥s)) ∑ °k3|¥s|2

ØØØØ
@V0

@¥s

ØØØØ ∑ k4|¥s|.

Since f is globally Lipschitz, one can say that:

|f(¥s, ¡(¥s) + æ)° f(¥s,¡(¥s))| ∑ L|æ|. (18)

Now, by choosing as a candidate Lyapunov function

W = V0(¥s) +
1
2

pX

i=1

æ2
i (19)

taking the derivative of (19) leads to:

Ẇ =
@V0

@¥s
f(¥s,æ + ¡(¥s)) +

pX

i=1

æiæ̇i

=
@V0

@¥s
[f(¥s,æ + ¡(¥s))° f(¥s,¡(¥s))]

+
@V0

@¥s
f(¥s,¡(¥s)) +

pX

i=1

æiæ̇i

∑ k4L|¥s||æ|° k3|¥s|2 ° Æ0

pX

i=1

N(æi)æi. (20)

Since inside ≠ it holds |æi| ∑ M± , the condition (15) is
valid for z = æi/M± and one can write:

Ẇ ∑ k4L|¥s||æ|° k3|¥s|2 °
Æ0

M±
∞|æ|2. (21)

By choosing M± < 4
k3Æ0∞

k2
4L

2
= M±

§, the right hand side
of (21) can be made negative.
In [2] and [13] results similar to Lemma 2 have been

presented. Assuming that disturbances are not present, the
assumptions on the nonlinearity in [2] and [13] are more
restrictive than (15). Indeed, the result in [2, Exercise 14.11] is
equivalent to assume ∞ = N(1) and therefore nonlinearity (10)
could not be considered. In [13] constraints on the nonlinearity
N seem to be even more restrictive, for instance N(z) =
2
º arctan( z

M±
), which satisfies (15), violates such constraints.

Note that choosing ±(t) Lipschitz at the zero crossing time
instants implies that (15) is verified, i.e. N has non zero slope
in the origin.

C. Boundary layer through dithering
The following lemma shows that if the dithered system (6)

has no sliding, the error between the state of the dithered
system and the state of the averaged system is of order of
the dither period.
Lemma 3: Consider the dithered system (6) and the aver-

aged system (7) with the assumptions that the dithered system
has an absolutely continuous solution and that the dither ±
is T -periodic and such that the averaged nonlinearity N is
Lipschitz continuous. Then the averaged system (7) has a

unique absolutely continuous solution on [0,1). Moreover,
for any given ¢ > 0 and initial condition x0, it holds that

|xd(t, x0)° xs(t, x0)| = O(T ), 8t 2 [0, ¢] (22)

where
xd =

µ
¥d

ªd

∂
, xs =

µ
¥s

ªs

∂
.

Proof: The result can be obtained as a particular case of
the averaging theorem proved in [6].
Lemma 4: Consider the averaged system (7) and the

dithered system (6). Suppose that the result of Lemma 3 holds
and the origin of the state space of the averaged system (7) is
globally uniformly asymptotically stable. Then the origin of
the state space of the dithered system (6) is practically globally
uniformly asymptotically stable.

Proof: The result can be obtained as a particular case of
the theorem proved in [14].
It is now possible to prove the main result of the paper.
Theorem 1: Consider the dithered system (6) and the av-

eraged system (7) in which the nonlinearity satisfies the
condition (15). Suppose that the origin of the system ¥̇s =
f(¥s,¡(¥s)) is globally exponentially stable and the hypothe-
ses of Lemma 4 hold. Then, for any initial condition x0, it
holds that

|xd(t, x0)° xs(t, x0)| = O(T ), 8t 2 [0,1). (23)

Proof: Applying Lemma 2 it follows that the origin of the
averaged system is globally uniformly asymptotically stable.
So, in force of Lemmas 3 and 4 the condition (22) holds over
an infinite time horizon.
The above theorem allows to conclude that the dithered

sliding controller will maintain the state close to the sliding
manifold.

D. Dither design
After that the sliding mode controller has been designed,

the practical implementation consists in the choice of the
averaged nonlinearity of the boundary layer system (7) in order
to satisfy some desired stability or robustness performances.
Such averaged nonlinearity corresponds to a particular dither
waveform (see (8)). As an example, if the averaged nonlinear-
ity is a saturation (with a slope of 1/M± in the linear region),
the corresponding dither can be a sawtooth or a triangular
waveform of amplitude M± . The robustness of the closed loop
system can be improved by decreasingM± since the gain of the
saturation increases and approximates with better accuracy the
relay characteristic. If a sinusoidal dither is used, the averaged
nonlinearity (10) corresponds to a sort of variable feedback
gain. In fact, when the state is close to the sliding manifold
the controller gain is “small” and thus the controller effect is
weak, whereas the effect of the controller increases when the
state goes away from the sliding manifold. Again performance
of the averaged system and accuracy with respect to the ideal
sliding mode controlled system can be varied by changing
the dither amplitude and period, respectively. The dither will
provide a constant switching frequency that can be varied by
changing the dither period, the state will remain close to the
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sliding manifold according to (23), and the local attractiveness
of the sliding manifold can be varied by changing the dither
shape and its amplitude. Moreover, from a global point of view
(i.e. large deviations) the dithered controller provides the same
performance of the ideal sliding mode one. In that sense, the
proposed solution is different from the classical Pulse Width
Modulation technique for which local averaged system are
typically used for the controller design.

IV. EXPERIMENTS ON A DC/DC BUCK CONVERTER
Consider the DC/DC buck converter represented in Figure 1.

A possible sliding mode controlled converter model can be
represented as follows

¥̇1 = ¥2 ° Vref (24a)

¥̇2 = ° 1
RC

¥2 +
1
C

ª (24b)

ª̇ = ° 1
L

¥2 +
E

2L
° E

2L
n(æ) (24c)

æ = k1ª + k2¥1 (24d)

which can be rewritten in the form (2). It is simple to show
that the system satisfies the sliding condition and reaches
the sliding manifold in a finite time. When the state lies on
the sliding manifold æ = 0 the dynamics of the system are
governed by (24a) and (24b). Thus by replacing ª (obtained
from the relation æ ¥ 0) in (24b), the equilibrium point of the
controlled system is given by [°Vrefk1

Rk2
, V ref,

Vref
R ]0. Furthermore,

k1 and k2 control the convergence rate to the equilibrium point.

L

R

✲IRF620

RURP1560

Hall Effect
Transducer

✲
ξ
C ✻η2

ADC1 ADC2

Digital Out

DS1103 PPC
Controller Board

+

-

+

-IR2117
TLP2200

Optoisolator
Driver

E ❥+-

Fig. 1. Controlled DC/DC buck converter.

The values of the converter parameters are E = 10V,
Vref = 6V, C = 220µF, L = 1mH, R = 8.9≠, and the
controller parameters are k1 = 0.5 and k2 = 10. The sliding
controller is implemented through a dSPACETM DS1103 PPC
controller board with a sampling period of 10µs. In practi-
cal implementation the digital controller can be replaced by
inexpensive hardware components consisting of operational
amplifiers (see (24d)) and a signal generator (for the dither).
First let us verify if the use of a certain dither signal allows
to obtain the theoretically predicted averaged behaviour. By
evaluating the time averaging (on a dither period) of the sliding
surface versus the output of the relay characteristic (duty
cycle) during different dynamic operating conditions due to
load and input changes, Figure 2 is obtained. The computed
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Fig. 2. Equivalent computed nonlinearity (with T = 200µs): (a) triangular
dither (top diagram), (b) sinusoidal dither (bottom diagram) both with M± =
0.1, 0.35.

averaged nonlinearities reproduce their analytical prediction
obtained through (8). Figure 2 confirms that during transient
the equivalence between the dithered and averaged system is
preserved.
We can now look for some more theoretical insights by

considering the experimental results obtained by varying the
input voltage (a step from 10V to 14V) and the load (an
abrupt change from 8.9≠ to 15≠) using dither signals with
different shapes and amplitudes. Figure 3 reports the corre-
sponding results obtained with two different dithered systems.
Other experimental results are synthesized in Table I. For
comparative purposes, the usual power electronics approach
to the boundary layer implementation, i.e. to use an hysteresis
band [10] is also considered.
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Fig. 3. Dynamic response of the output voltage to an input voltage variation
(from 10V to 14V) for: (a) triangular dither (top diagram) and (b) sinusoidal
dither (bottom diagram) both with M± = 0.25 and T = 200µs.
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TABLE I
EXPERIMENTAL RESULTS FOR INPUT VOLTAGE CHANGE.

Settling Switching Voltage
Amplitude Time Frequency Overshoot Ripple
±0.01 20ms 14kHz 6.7% 0.12V

Hysteresis ±0.1 22ms 5.4kHz 8.3% 0.18V
±0.2 25ms 3.6kHz 12% 0.35V
0.1 21ms 5kHz 12.5% 0.17V

Triangular 0.25 30ms 5kHz 16.6% 0.22V
dither 0.35 38ms 5kHz 20% 0.25V

0.1 24ms 5kHz 15% 0.22V
Sinusoidal 0.25 34ms 5kHz 21.7% 0.25V
dither 0.35 52ms 5kHz 26.7% 0.25V

By increasing the amplitude of the triangular dither, the
equivalent gain of the averaged nonlinearity decreases and the
dynamic response is slower (see the settling time in Table I).
In the case of a sinusoidal dither, experiments show a different
behaviour (see Figure 3): now the dither ensures a fast transient
only when the state is far from the sliding manifold. In fact,
the sinusoidal dither allows a better rejection of disturbance
due to the larger gain far from the sliding manifold. On the
other hand, in a neighborhood of the sliding manifold the
convergence is slower due to the smaller gain of the arcsin
nonlinearity. It is clear that if the amplitude of the sinusoidal
dither is smaller, the equivalent nonlinearity approaches the
relay characteristic and the dynamics are faster. Note that
the switching frequency is constant for each dither amplitude
differently from the hysteresis case in which it changes by
varying the band (see Table I).
Figure 4 shows the trajectories in the state space. Note that the
ripple about the sliding manifold remains bounded by ±M± ,
so as predicted by Lemma 1.
Table II reports the experimental results obtained by varying
the load. By computing from (24) the corresponding averaged
model (which in this case is linear) it is simple to verify that
the experiments confirm that the dithered system represents a
good approximation of the boundary layer one.
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Fig. 4. Trajectory of the dithered system in the phase plane to an input
variation (a change from 10V to 14V) for a triangular dither with T = 100µs
and M± = 0.1 (top diagram) and M± = 0.05 (bottom diagram).

TABLE II
EXPERIMENTAL RESULTS FOR LOAD CHANGE.

Settling Switching Voltage
Amplitude Time Frequency Overshoot Ripple
±0.01 22ms 14kHz 41.7% 0.18V

Hysteresis ±0.1 25ms 5.4kHz 40% 0.22V
±0.2 29ms 3.6kHz 36.7% 0.3V
0.1 24ms 5kHz 35% 0.21V

Triangular 0.25 26ms 5kHz 25% 0.24V
dither 0.35 34ms 5kHz 21.7% 0.25V

0.1 28ms 5kHz 33.3% 0.22V
Sinusoidal 0.25 35ms 5kHz 21.7% 0.24V
dither 0.35 49ms 5kHz 20% 0.25V

V. CONCLUSIONS
Dithering has been proved to be an efficient solution for

the practical implementation of boundary layer in sliding mode
controlled switched systems. By preserving the natural switch-
ing operating mode of the system, the proposed technique
allows to adapt the boundary layer by simply changing the
dither shape. Experiments obtained by considering a sliding
mode controlled DC/DC buck power electronic converter val-
idate the proposed technique. The experimental results confirm
the converter behaviour predicted by the averaged analytical
model and shows possible exploitations of the paper results.
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