
Averaging ofNonsmoothSystemsusingDither

Luigi Iannelli a, Karl Henrik Johansson b, Ulf T. Jönsson c, Francesco Vasca a

aDept. of Engineering
University of Sannio

Piazza Roma, 21
82100 Benevento, Italy

bDept. of Signals, Sensors & Systems
Royal Institute of Technology
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Abstract

It was shown by Zames and Shneydor and later by Mossaheb that a high-frequency dither signal of a quite arbitrary shape can
be used to narrow the effective nonlinear sector of Lipschitz continuous feedback systems. In this paper it is shown that also
discontinuous nonlinearities of feedback systems can be narrowed using dither, as long as the amplitude distribution function
of the dither is absolutely continuous and has bounded derivative. The averaged system is proven to approximate the dithered
system with an error of order of the dither period.
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1 Introduction

A frequently used technique to stabilize a nonlinear feed-
back system in Luré form is by injecting a high-frequency
dither signal, which narrows the nonlinear sector. If the
dither frequency is sufficiently high, the behavior of the
dithered system will be qualitatively the same as an av-
eraged system, whose nonlinearity is the convolution of
the amplitude distribution of the dither and the origi-
nal nonlinearity. Analysis and control design can then be
carried out on the averaged system, which in most cases
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is simpler to analyze due to lack of external dither signal
and narrower nonlinearity. For the case when the origi-
nal nonlinearity is Lipschitz continuous, the scheme out-
lined above was rigorously justified using properties of
the amplitude distribution function of the dither [23,24].
Similar results were obtained later using classical aver-
aging theory [12].

The Lipschitz continuity assumption on the nonlinear-
ity of the dithered system is often violated in practice.
Indeed, discontinuous nonlinearities in feedback sys-
tems with high-frequency excitations appear in a large
variety of applications, including systems with adaptive
control [2], friction [1], power electronics [11], pulse-
width modulation [13], quantization [6], relays [20], and
variable-structure control [21]. It is common to analyze
these systems using empirical methods such as describ-
ing functions, which can give a quite good intuitive
understanding. It is hard, however, to get bounds on
the approximation these methods provide and they may
even give erroneous results, so therefore there is a need
for a solid treatment of discontinuous systems with high-
frequency excitation. Recently, certain classes of these
systems have been thoroughly studied, such as power
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converters [11], pulse-width modulated systems [5,18],
relay systems [8], and stick-slip drives [16].

The main contribution of the paper is an averaging the-
orem for a general class of nonsmooth systems with a
quite arbitrary periodic dither. The result states that
the dithered and the averaged systems have qualitatively
the same behavior when the dither has sufficiently high
frequency and an absolutely continuous amplitude dis-
tribution function with bounded derivative. The aver-
aging theorem might be interpreted as an extension to
nonsmooth feedback system of previous results, which
were limited to Lipschitz-continuous systems [23,24,12].

The outline of the paper is as follows. The dithered sys-
tem and the corresponding averaged system are intro-
duced in Section 2. The amplitude distribution function
of the dither signal is thoroughly discussed, since it plays
a key role in the analysis. The main result on the approxi-
mation error between the dithered and the averaged sys-
tems is presented in Section 3. The paper is concluded
in Section 4 and the proofs are reported in Appendix.

2 Preliminaries

2.1 Dithered System

The dithered feedback system is defined as

ẋ(t) = f0(x(t), t) +
m
∑

i=1

fi(x(t), t)ni(gi(x(t), t) + δi(t)),

x(0) = x0. (1)

The state x belongs to Rq. The functions fi : Rq ×R →
Rq, i = 1, . . . , m, are assumed to be globally Lipschitz
with respect to both x and t, i.e., there exists a positive
constant Lf such that for all x1, x2 ∈ Rq and t1, t2 ≥ 0,

|fi(x1, t1) − fi(x2, t2)| ≤ Lf (|x1 − x2| + |t1 − t2|) .

We further assume that f0 is piecewise continuous with
respect to t, f0(0, t) = 0 for all t ≥ 0, and

|f0(x1, t) − f0(x2, t)| ≤ Lf |x1 − x2|

for all x1, x2 ∈ Rq and t ≥ 0. Similarly, the functions
gi : Rq × R → R, i = 1, . . . , m, are assumed to have a
common Lipschitz constant Lg > 0, i.e.,

|gi(x1, t1) − gi(x2, t2)| ≤ Lg (|x1 − x2| + |t1 − t2|)

for all x1, x2 ∈ Rq, t1, t2 ≥ 0. The nonlinearities ni :
R → R, i = 1, . . . , m, are assumed to be functions of
bounded variation. Recall that the total variation TV of

a function n : R → R is

TV (n) ! sup
−∞<z0≤z1≤···≤zk<∞

k
∑

i=1

|n(zi) − n(zi−1)|,

where the supremum is taken over all finite sequences
{zi}k

i=0 with k ≥ 1 [22]. If the total variation is bounded,
we simply say that n is of bounded variation. Hence, the
functions ni can be discontinuous, but they are necessar-
ily bounded. Each dither signal δi : [0,∞) → R is sup-
posed to be a p-periodic measurable function bounded
by a positive constant Mδ, i.e., |δi| ≤ Mδ ∀i.

When the differential equation (1) has a discontinuous
right-hand side (due to that at least one ni is discontinu-
ous), existence and uniqueness of solutions depend crit-
ically on the considered definition of solution [4]. In the
following we assume that the differential equation (1) has
at least one absolutely continuous solution x(t, x0) on
[0,∞) (in the sense of Carathéodory). We suppose that
the time intervals when the solution is at a discontinuity
point of ni are of zero Lebesgue measure. Note that as
a consequence, we do not consider solutions with sliding
modes. Furthermore we suppose that the solutions have
no accumulation of switching events (Zeno solutions).

The assumptions on system (1) imply that there ex-
ists a positive constant Lx such that |x(t1) − x(t2)| ≤
Lx|t1 − t2| for almost all 0 ≤ t1 ≤ t2 < ∞. Estimates of
the Lipschitz constant Lx can be easily obtained on any
compact interval.

Remark 1 The assumption on the nonlinearity ni is
weak. The class of considered systems thus contains quite
exotic differential equations for which, for example, ex-
istence and uniqueness of solution cannot easily be ad-
dressed. However, for most cases in applications the exis-
tence of a Carathéodory solution is reasonable. Existence
and uniqueness of solutions for dithered relay systems
are discussed in [10].

Remark 2 The assumption on global Lipschitz continu-
ity of the functions fi, gi is used to derive the Lipschitz
bound Lx. The assumption can be relaxed by assuming
Lipschitzness on a bounded set provided that dithered and
averaged solutions belong to such set., see [19].

2.2 Dither Signals and Their Amplitude Distribution
Functions

Definition 2.1 The amplitude distribution func-
tion Fδ : R → [0, 1] of a p-periodic dither signal
δ : [0,∞) → R is defined as

Fδ(ξ) !
1

p
µ ({t ∈ [0, p) : δ(t) ≤ ξ})

where µ denotes the Lebesgue measure.
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Fig. 1. Triangular dither signal with its corresponding ampli-
tude distribution function and amplitude density function.
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Fig. 2. Trapezoidal dither with its amplitude distribution
function and the corresponding generalized derivative.

When the amplitude distribution function is absolutely
continuous (with respect to its Lebesgue measure), the
amplitude density function fδ(ξ) is defined as

fδ(ξ) !
dFδ

dξ
(ξ)

which exists almost everywhere.

The amplitude density and amplitude distribution func-
tions play in a deterministic framework the same role
as the probability density and cumulative distribution
functions play in a stochastic framework. In particu-
lar, the amplitude distribution function is bounded,
monotonously increasing, continuous from the right,
and, if it is absolutely continuous, its derivative corre-
sponds to the amplitude density function.

Typical dither signals are sawtooth, triangular, sinu-

soidal, trapezoidal, and square wave signals. Fig. 1 shows
a triangular dither signal together with its amplitude
distribution function Fδ and amplitude density function
fδ. A sawtooth dither with amplitude Aδ and period
p has the same amplitude distribution function. For a
trapezoidal dither, the amplitude distribution and its
generalized derivative are reported in Fig. 2. Note that
square wave dither corresponds to ∆ = 0. It is easy
to see that dither signals that are constant over non-
vanishing time intervals, such as trapezoidal and square
wave signals, have discontinuous amplitude distribution
function, which is thus in contrast to triangular dither.

2.3 Averaged System

The averaged system is given by

ẇ(t) = f0(w(t), t) +
m
∑

i=1

fi(w(t), t)Ni(gi(w(t), t)),

w(0) = w0, (2)

where Ni is the averaged nonlinearity defined as follows.

Definition 2.2 For each dither signal δ : [0,∞) → R

and nonlinearity n : R → R the averaged nonlinearity
N : R → R is defined as

N(z) !

∫

R

n(z + ξ) dFδ(ξ) (3)

where the integral is a Lebesgue–Stieltjes integral.

In many cases the averaged nonlinearity can be formu-
lated as a time average, as the following lemma states.

Lemma 2.1 [3,17] The following equality holds pro-
vided that either side exists:

∫

R

n(z + ξ) dFδ(ξ) =
1

p

∫

[0,p)
n(z + δ(s)) ds.

It is interesting to investigate some aspects related to
the continuity of the amplitude distribution function.
When the amplitude distribution function is absolutely
continuous, we have

N(z) =

∫

R

n(z + ξ) dFδ(ξ) =

∫

R

n(z + ξ)fδ(ξ) dξ,

which is well defined under the given assumptions on n.

When the Lebesgue–Stieltjes measure corresponding to
the amplitude distribution function has a decomposition
(relative to the Lebesgue measure) into an absolutely
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continuous part with derivative fδ and an atomic part,
we have

N(z) =

∫

R

n(z + ξ) dFδ(ξ)

=

∫

R

n(z + ξ)fδ(ξ) dξ +
∑

k

n(z + ξk)Fk, (4)

where Fk ̸= 0 are the jump discontinuities corresponding
to the atomic parts of the measure defined by the ampli-
tude distribution function. Square wave and trapezoidal
dither signals have this kind of amplitude distribution
functions, cf., Fig. 2. Equation (4) is well defined except
at possible discontinuity points of n. Thus in the case in
which n is continuous, the results of Zames and Shney-
dor [23] and Mossaheb [12] can be applied together with
equation (4) to compute the averaged system. If the am-
plitude distribution function is discontinuous in ξk and
n is discontinuous in z + ξk, then neither these results
from the literature nor the averaging theorem in Sec-
tion 3 can be applied. Indeed, it can be shown that the
averaged and the dithered systems can behave qualita-
tively quite different when n is discontinuous. See [10]
for an illustrative example of this case.

3 Averaging Theorem

The main result of the paper states conditions under
which the averaged system approximates the behavior
of the dithered system for a sufficiently high dither fre-
quency.

Theorem 3.1 Consider the dithered system (1) and the
averaged system (2) under the following assumptions:

(i) the dithered system has an absolutely continuous solu-
tion,

(ii) fi and gi are globally Lipschitz with Lipschitz constants
Lf and Lg, respectively,

(iii) f0 is globally Lipschitz with respect to x with Lipschitz
constant Lf , and f0(0, t) = 0,

(iv) ni is a function of bounded variation,
(v) each dither δi is p-periodic, |δi| ≤ Mδ, and has abso-

lutely continuous amplitude distribution function Fδi

with derivative bounded by LF ! maxi supξ∈R |fδi(ξ)| <
∞.

Then, the averaged nonlinearities Ni are globally Lips-
chitz continuous and the averaged system (2) has a unique
absolutely continuous solution on [0,∞). Moreover, for
any compact set K ⊂ Rn and any T > 0, there exists a
positive constant c(K, T ) such that

|x(t, x0) − w(t, x0)| ≤ c(K, T )p, ∀x0 ∈ K, t ∈ [0, T ]
(5)

PROOF. See Appendix.

Remark 3 It is possible to relax the periodicity assump-
tion on the dither and instead consider F -repetitive dither
signals as in [23]. A dither signal δ is F -repetitive if
there exists an unbounded sequence {tk}, 0 = t0 < t1 . . .,
of sampling times such that (1) the maximal repetition
interval supk(tk − tk−1) is bounded and (2) the ampli-
tude distribution function of δ on every interval (tk−1, tk)
is equal to the amplitude distribution function of δ on
(t0, t1). See [10] for details.

Remark 4 The statement of the theorem appears to be
fairly tight, because examples suggest that dithering might
loose its effect when the hypotheses are violated. In par-
ticular, the dithered and the averaged solution may have
qualitatively different behavior when the averaged non-
linearity is not Lipschitz continuous. Experimental con-
firmation of such behaviors on a DC motor are provided
in [9]. We have discovered similar phenomena for limit
cycles of the averaged and the dithered systems in [8,7,9].
The reason for the different behaviors in these examples
is that averaged solution converges to a point of discon-
tinuity of the nonlinearity, while the dithered system has
a solution with a small amplitude ripple that perturb the
solution across the boundary of the discontinuity. This
behaviour gives rise to a new type of oscillation of the
dithered system, which deserves more careful analysis.
Obviously, a bound as in (5), which is uniform in every
given compact set, cannot be fulfilled when the qualitative
presence of the dithered and the averaged systems are so
different.

Remark 5 Dithering can be interpreted as a technique
for regularization of solutions of nonsmooth systems. In
fact, if n is discontinuous, the solution of (1) might not
be unique. On the other hand, if the amplitude distribu-
tion function of the dither is Lipschitz, then the averaged
nonlinearity will be Lipschitz, so the averaged system (2)
will have a unique solution. Now, from Theorem 3.1 one
can conclude that by decreasing the dither period, all pos-
sible solutions of (1) will become closer and closer to the
unique solution of the averaged system (2).

4 Conclusions

It was shown that a high-frequency dither signal of a
quite arbitrary shape can be used to narrow the effective
nonlinear sector of nonsmooth feedback systems. The re-
sult can be interpreted as an extension of existing results
for Lipschitz-continuous systems. The main theorem re-
lated the dynamics of the dithered system with an av-
eraged system and stated that the approximation error
is of the order of the dither period, under the condition
that the amplitude distribution function of the dither is
absolutely continuous and has bounded derivative.
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A Proof of Theorem 3.1

The proof is based on three lemmas. In the first lemma
we show that the averaged nonlinearity under our as-
sumptions is Lipschitz continuous, which implies that
there exists a unique absolutely continuous solution of
the averaged system on any finite time-horizon.

Lemma A.1 Suppose n is of bounded variation with to-
tal variation TV (n) and that Fδ is absolutely continuous
with derivative fδ and LF = supξ∈R |fδ(ξ)| < ∞. Then
∥n∥∞ ≤ Mn and

N(z) =

∫

R

n(z + ξ)fδ(ξ) dξ

has a Lipschitz constant LN ≤ LF TV (n) and ∥N∥∞ ≤
∥n∥∞.

PROOF. Since n is of bounded variation, it follows
that ∥n∥∞ ≤ Mn, for some Mn > 0. Moreover we have

|N(z1) − N(z2)| =

∣

∣

∣

∣

∫

R

[n(z1 + ξ) − n(z2 + ξ)] dFδ(ξ)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

R

n(ξ) [ dFδ(ξ − z1) − dFδ(ξ − z2)]

∣

∣

∣

∣

Let V (ξ) = Fδ(ξ−z1)−Fδ(ξ−z2). We have V (ξ) = 0 for
ξ ̸∈ S = [−Mδ + min(z1, z2), Mδ + max(z1, z2)]. Hence,
for any I = [a, b] ⊃ S integration by parts gives

|N(z1) − N(z2)| =

∣

∣

∣

∣

∫

I

n(ξ)( dFδ(ξ − z1) − dFδ(ξ − z2)

∣

∣

∣

∣

=

∣

∣

∣

∣

n(b)V (b) − n(a)V (a) −

∫

I

V (ξ) dn(ξ)

∣

∣

∣

∣

≤ sup
ξ∈I

|V (ξ)|

∫

I

| dn(ξ)| ≤ LF |z1 − z2|TV (n),

where the last inequalities follow because V (a) = V (b) =
0 and

|V (ξ)| =

∣

∣

∣

∣

∫ z1

z2

fδ(ξ − σ) dσ

∣

∣

∣

∣

≤ LF |z1 − z2|.

The boundedness follows since

|N(z)| =

∣

∣

∣

∣

∫

R

n(z + ξ)fδ(ξ) dξ

∣

∣

∣

∣

≤ ∥n∥∞

∫

R

fδ(ξ) dξ

= ∥n∥∞

being fδ nonnegative. ✷

It should be noticed that if n is Lipschitz then the
corresponding averaged nonlinearity N will be Lips-
chitz independently on the characteristic of Fδ, see [23].
Lemma A.1 says that in order to have N Lipschitz even
when n is not Lipschitz, we can impose the conditions of
Fδ being absolute continuous with bounded derivative.
The next lemma is the key to the proof of Theorem 3.1.

Lemma A.2 Suppose the signal y : [0, p] → R has Lip-
schitz constant Ly. Introduce a constant ỹ satisfying

min
s∈[0,p]

y(s) ≤ ỹ ≤ max
s∈[0,p]

y(s).

Suppose that Fδ is absolutely continuous with bounded
derivative: LF = supξ∈R |fδ(ξ)| < ∞. Then

∣

∣

∣

∣

∫ p

0
n(−y(s) + δ(s)) ds −

∫ p

0
n(−ỹ + δ(s)) ds

∣

∣

∣

∣

≤

2LF LyTV (n)p2,

where TV (n) is the total variation of n.

PROOF. From the definition of Fδ we have

F−y+δ(ξ) =
1

p
µ ({s ∈ [0, p) : −y(s) + δ(s) ≤ ξ}) ,

so that

E !

∣

∣

∣

∣

∫ p

0
n(−y(s) + δ(s)) ds −

∫ p

0
n(−ỹ + δ(s)) ds

∣

∣

∣

∣

= p

∣

∣

∣

∣

∫

R

n(ξ) dF−y+δ(ξ) −

∫

R

n(ξ) dF−ỹ+δ(ξ)

∣

∣

∣

∣

.

By hypothesis

ỹ − Lyp ≤ y(s) ≤ ỹ + Lyp, ∀s ∈ [0, p],

and thus it follows that for any ξ ∈ R,

F−ỹ+δ(ξ − Lyp) ≤ F−y+δ(ξ) ≤ F−ỹ+δ(ξ + Lyp).
(A.1)

On the other hand, since F−ỹ+δ is nondecreasing,

F−ỹ+δ(ξ − Lyp) ≤ F−ỹ+δ(ξ) ≤ F−ỹ+δ(ξ + Lyp).
(A.2)

By combining (A.1) and (A.2) and using that F−ỹ+δ(ξ) =
Fδ(ξ + ỹ) is Lipschitz and non-negative, we get

F−y+δ(ξ) − F−ỹ+δ(ξ) ≤
F−ỹ+δ(ξ + Lyp) − F−ỹ+δ(ξ − Lyp) ≤

2LF Lyp.
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In an analogous way,

−2LF Lyp ≤ F−y+δ(ξ) − F−ỹ+δ(ξ).

So we can write

F−y+δ(ξ) = F−ỹ+δ(ξ) + V (ξ)

with |V (ξ)| ≤ 2LF Lyp and thus

E = p

∣

∣

∣

∣

∫

R

n(ξ) dV (ξ)

∣

∣

∣

∣

.

Since for s ∈ [0, p] we have |y(s)− ỹ| ≤ Lyp and |δ(s)| ≤
Mδ,

V (ξ) = 0, ∀ ξ /∈ [−ỹ−Lyp−Mδ,−ỹ +Lyp+Mδ] ! S.

The function V (ξ) is of bounded variation and continu-
ous from the right, since it is the difference of two func-
tions that satisfy both these properties. By hypothesis
n is of bounded variation with total variation TV (n) so
we can integrate by parts [14]:

∫

[a,b]
n(ξ) dV (ξ) = n(b)V (b) − n(a)V (a) −

∫

[a,b]
V (ξ) dn(ξ),

where right and left limits of n and V are used in order
to cope with discontinuities. If [a, b] ⊃ S then V (a) =
V (b) = 0, and thus in general

E ≤p

∣

∣

∣

∣

∫

S

V (ξ) dn(ξ)

∣

∣

∣

∣

≤ 2p2LF LyTV (n),

which proves the lemma. ✷

Lemmas A.1 and A.2 are used to prove the following
result.

Lemma A.3 If the assumptions of Theorem 3.1 hold,
then there exist constants K̄, K̃ > 0 such that
∣

∣

∣

∣

∫ p

0
fi(x, s)ni(gi(x, s) + δi) ds −

∫ p

0
fi(w, s)Ni(gi(w, s)) ds

∣

∣

∣

∣

≤

K̄

∫ p

0
|x(s) − w(s)| ds + K̃p2.

PROOF. For this proof we need a Lipschitz constant
for x(t) on [0, T ]. By our assumptions we have

|x(t)| = |x0

+

∫ t

0

(

f0(x(s), s) +
m
∑

i=1

fi(x(s), s)ni(gi(x(s), s) + δi(s))

)

ds|

≤ |x0| + (1 + mMn)Lf

∫ t

0
|x(s)| ds + mMnTMI

where we used |fi(x, s)−fi(0, s)+fi(0, s)| ≤ Lf |x(s)|+
|fi(0, s)| and introduced

MI = max
i=1,...,m

max
t∈[0,T ]

|fi(0, t)|.

Grönvall-Bellman Lemma gives

|x(t)| ≤ (mMnMIT + |x0|) e(1+mMn)Lf T =: Mx, t ∈ [0, T ].

(A.3)

This implies that |ẋ(t)| ≤ LfMx + mMfMn a.e., with

Mf = Lf (Mx + T ) + max
i

|fi(0, 0)|. (A.4)

This gives the Lipschitz bound Lx = LfMx + mMfMn.
Hence, for any t̃ ∈ [0, p] and x̃ := x(t̃), we have that
|x(s) − x̃| ≤ Lxp for all s ∈ [0, p].

Let us consider the following equality:

fi(x, t)ni(gi(x, t) + δi) − fi(w, t)Ni(gi(w, t))

= fi(x, t)ni(gi(x, t) + δi) − fi(x̃, t̃)ni(gi(x, t) + δi)
(A.5a)

+ fi(x̃, t̃)ni(gi(x, t) + δi) − fi(x̃, t̃)ni(gi(x̃, t̃) + δi)
(A.5b)

+ fi(x̃, t̃)ni(gi(x̃, t̃) + δi) − fi(x̃, t̃)Ni(gi(x̃, t̃))
(A.5c)

+ fi(x̃, t̃)Ni(gi(x̃, t̃)) − fi(x, t)Ni(gi(x, t)) (A.5d)
+ fi(x, t)Ni(gi(x, t)) − fi(w, t)Ni(gi(w, t)). (A.5e)

Integrating (A.5) leads to the inequality

∣

∣

∣

∣

∫ p

0
[fi(x, s)ni(gi(x, s) + δi) − fi(w, s)Ni(gi(w, s))] ds

∣

∣

∣

∣

≤ MnLf (Lx + 1)p2

(A.6a)

+|fi(x̃, t̃)|

∣

∣

∣

∣

∫ p

0

[

ni(gi(x, t) + δi) − ni(gi(x̃, t̃) + δi)
]

ds

∣

∣

∣

∣

(A.6b)

+MnLf(Lx + 1)p2 + MfLNLg(Lx + 1)p2

(A.6c)

+(MnLf + MfLNLg)

∫ p

0
|x − w| ds,

(A.6d)

where we used that the integral of (A.5c) is zero by the
definition of the averaged nonlinearity in (3). The other
terms follows from the following arguments. First note
that

|fi(x, t) − fi(x̃, t̃)| ≤ Lf (Lx + 1)p,

over the interval [0, p]. This gives (A.6a). Similarly,

|gi(x, t) − gi(x̃, t̃)| ≤ Lg(Lx + 1)p
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over the interval [0, p]. Thus by applying Lemma A.2
with −y(s) = gi(x(s), s) and −ỹ = gi(x̃, t̃), it follows
that (A.6b) is bounded by

2p2MfLF Lg(Lx + 1)TV (n) (A.7)

where we used Mf in (A.4). For the remaining terms we
use that the Lipschitz constant of fiNi is

L[fiNi] ≤ LfMn + MfLN

We use this to show that (A.5d) is bounded by
MnLf(Lx +1)p+MfLNLg(Lx +1)p and (A.6c) follows.
In analogous way we can show that the upper bound
of (A.5e) is MnLf |x − w| + MfLNLg|x − w|.

For any p > 0, we have shown that

∣

∣

∣

∣

∫ p

0
[fi(x, s) · ni(gi(x, s) + δi) − fi(w, s) · Ni(gi(w, s))] ds

∣

∣

∣

∣

≤ K̄

∫ p

0
|x − w| ds + K̃p2,

with

K̄ = MnLf + MfLNLg

K̃ = MnLf (Lx + 1) + 2MfLF Lg(Lx + 1)TV (n)
+ MnLf (Lx + 1) + MfLNLg(Lx + 1)

✷

Now we can proceed by showing that the approximation
error between the dithered and the averaged system can
be arbitrarily small by increasing the dither frequency,
as stated in the theorem.

Proof of Theorem 3.1. Consider the dithered sys-
tem (1) and the averaged system (2) on the time interval
[0, T ] with w0 = x0. By integrating the right-hand sides
of (1) and (2), we can write

|x(t) − w(t)| ≤

∫ t

0
|f0(x, s) − f0(w, s)| ds

+
m
∑

i=1

∣

∣

∣

∣

∫ t

0
[fi(x, s)ni(gi(x, s) + δi) − fi(w, s)Ni(gi(w, s))] ds

∣

∣

∣

∣

for all t ∈ [0, T ].

If we introduce ℓ = ⌊T/p⌋, the largest integer such that
ℓp ≤ T , then by using the periodicity of δi,

|x(t) − w(t)| ≤

∫ t

0
|f0(x(s), s) − f0(w(s), s)| ds

+
ℓ−1
∑

k=0

m
∑

i=1

∣

∣

∣

∣

∣

∫ (k+1)p

kp

fi(x(s), s)ni(gi(x(s), s) + δi(s)) ds

−

∫ (k+1)p

kp

fi(w(s), s)Ni(gi(w(s), s)) ds

∣

∣

∣

∣

∣

+V1(p), (A.8)

where the last term is bounded as |V1(p)| ≤ 2mMfMnp.

The Lipschitz property of f0 gives

∣

∣

∣

∣

∫ t

0
[f0(x(s), s) − f0(w(s), s)] ds

∣

∣

∣

∣

≤ Lf

∫ t

0
|x(s) − w(s)| ds.

Next we notice that each integral in the sum of (A.8)
can be written as

∫ p

0
fi(xk(s), sk)ni(gi(xk(s), sk) + δi(s)) ds

−

∫ p

0
fi(wk(s), sk)Ni(gi(wk(s), sk)) ds

where the subscript k denotes a time translation:
sk = s + kp, xk(s) = x(s + kp), and similarly
for w. Then applying Lemma A.3, each integral
∫ p

0 (fi(xk, sk)ni(gi(xk, sk) + δi(s))) ds can be approx-
imated by

∫ p

0 fi(wk, sk)Ni(gi(wk, sk)) ds. Indeed, the
Lipschitz assumptions on fi and gi are uniform in
t so Lemma A.3 can be applied to all functions
xk. The approximation error has an upper bound
K̄
∫ p

0 |xk − wk| ds + K̃p2. By summing all the contribu-
tions given by the time intervals [kp, (k + 1)p] ⊂ [0, T ],
we get

|x(t) − w(t)| ≤ K

∫ t

0
|x(s) − w(s)| ds + mK̃pT

+ V1(p) + V2(p), ∀t ∈ [0, T ],

where K = Lf + mK̄ = Lf + MnLf + MfLNLg and
V2(p) is bounded by

|V2(p)| ≤ mK̄(Mx + Mw)p

where Mx was derived in (A.3) and Mw can in similar
way be shown to be bounded by the same constant since
w(0) = x(0) and ∥N∥∞ ≤ ∥n∥∞, so that in fact Mw ≤
Mx.

7



By applying Grönvall-Bellman Lemma [15], the theorem
follows since

|x(t) − w(t)| ≤ (mK̃Tp + V1(p) + V2(p)) eKT ∀t ∈ [0, T ]

where the right hand side is of order p. We have proven
the bound in (5) with

c(K, T ) = m sup
x0∈K

(K̃T + 2MfMn + 2K̄Mx) eKT

where K, K̄, K, Mx and Mf all depend on x0. ✷
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